Height is normally distributed with a mean of 68 inches and a standard deviation of 3 inches. Given the data above, if 9 people were randomly chosen, what is the probability that their average height would be over 70 inches?

Answers

Answer 1

The probability that the average height of 9 randomly chosen people is over 70 inches is approximately 0.0478, or 4.78%.

1. Identify the given values: mean (µ) = 68 inches, standard deviation (σ) = 3 inches, and sample size (n) = 9.


2. Calculate the standard deviation of the sample mean using the formula σ/√n: 3/√9 = 3/3 = 1.


3. Determine the z-score for 70 inches using the formula (X - µ)/(σ/√n): (70 - 68)/1 = 2.


4. Find the probability of a z-score greater than 2 by referring to a z-table or using a calculator, which is approximately 0.0228.


5. Since the question asks for the probability over 70 inches, subtract the probability from 1: 1 - 0.0228 ≈ 0.9772.


6. The probability that the average height is over 70 inches is 1 - 0.9772 = 0.0478, or 4.78%.

To know more about z-score click on below link:

https://brainly.com/question/15016913#

#SPJ11


Related Questions

if xy = e^y = e, find the value of y ′′ at the point where x = 0.

Answers

To find the value of y'' at the point where x=0, we need to take the second derivative of y with respect to x. First, let's find the first derivative of y: xy = e^y .



Differentiating both sides with respect to x: y + xy' = e^y * y', Simplifying: y' (1 - e^y) = -y, y' = -y / (1 - e^y)
Now, let's find the second derivative of y:
Using the quotient rule,
y'' = [(1 - e^y) (-y') - (-y)(e^y * y')] / (1 - e^y)^2


Substituting y' = -y / (1 - e^y)
y'' = [(1 - e^y) (-(-y / (1 - e^y))) - (-y)(e^y * (-y / (1 - e^y)))] / (1 - e^y)^2
y'' = [(y / (1 - e^y)) + (y * e^y) / (1 - e^y))] / (1 - e^y)^2
y'' = [y + y * e^y] / (1 - e^y)^3



Now we can find the value of y'' at x=0:
Since xy = e^y, when x=0,
0y = e^y, This is only true when y=-infinity, so the point where x=0 is not defined, Therefore, we cannot find the value of y'' at the point where x=0.

To know more about derivative click here

brainly.com/question/29096174

#SPJ11

Find the vertical and horizontal lines through the point (-1,5). Choose the two correct answers. 1. Horizontal:y-5 2. Vertical: x5 3. Vertical y 5 4. Horizontal: 5 5. Horizontal: x1 6. Horizontaly. 1 7. Vertical-.1 m 8. Vertical y. 1

Answers

Answer:

vertical is x = - 1 , horizontal is y = 5

Step-by-step explanation:

the equation of a vertical line is

x = c ( c is the value of the x- coordinates the line passes through )

the line passes through (- 1, 5 ) with x- coordinate - 1 , then

x = - 1 ← equation of vertical line

the equation of a horizontal line is

y = c ( c is the value of the y- coordinates the line passes through )

the line passes through (- 1, 5 ) with y- coordinate 5 , then

y = 5 ← equation of horizontal line

A park has grass and sand. Find the area of the part with grass.
(Sides meet at right angles.)

Answers

Answer:

[tex]26m^{2}[/tex]

Step-by-step explanation:

To solve this problem you find the total area of the entire rectangle and subtract the area of the sand from it. That will give you the area of the grass.

To find the total area you need to do [tex]b*h[/tex], in this case, the base is [tex]2+3+2[/tex] or 7. The height is 5. So to find the area, you have to multiply  [tex]7*5[/tex] to get[tex]35m^{2}[/tex].

To find the area of the grass you multiply the [tex]b*h[/tex] or [tex]3*3[/tex] to get the area of 9.

Now the last step is to subtract [tex]35 - 9[/tex], doing so gives you your answer of 26 m

I would love to get Brainliest. I'm trying to get to the Genius status on Brainly.

A fair coin is tossed repeatedly until the first "H" shows up - i.e. the outcome of the experiment is the number of tosses required until the first H occurs (1) What is the sample space for this experiment?(2) Find the probability law for this experiment - i.e. the P(each outcome) [Hint: Use tree diagram representation]

Answers

1) The sample space consists of all possible outcomes of coin tosses until the first "H" occurs

2) Probability of each outcome given by (1/2)^(n+1) where n is the number of tails before the first head

1) How to determine the sample space?

The sample space for this experiment is the set of all possible outcomes of the coin tosses until the first "H" occurs. This includes all possible sequences of "T" (tails) and "H" (heads), with the restriction that the first "H" must be the last element in the sequence. For example, some possible outcomes are:

"H" (the first toss is heads)

"TH" (the first heads is on the second toss)

"TTTH" (the first heads is on the fourth toss)

2) How to find the probability law for this experiment?

To find the probability law for this experiment, we can use a tree diagram to represent all possible outcomes and their probabilities. At each node in the tree, we branch to represent the two possible outcomes of the next coin toss (heads or tails). The probability of each branch is 1/2, since the coin is fair.

Here is the first level of the tree:

H (probability 1/2)

T (probability 1/2)

If the first toss is heads, we have reached the desired outcome and the experiment ends. If the first toss is tails, we continue branching:

T - H (probability 1/2 * 1/2 = 1/4)

T - T (probability 1/2 * 1/2 = 1/4)

If the second toss is heads, the experiment ends with a total of two tosses. If the second toss is tails, we continue branching:

T - T - H (probability 1/2 * 1/2 * 1/2 = 1/8)

T - T - T (probability 1/2 * 1/2 * 1/2 = 1/8)

We can continue this process to generate the full tree, which has an infinite number of levels (since the experiment could theoretically go on forever). However, we can see that each outcome corresponds to a unique path through the tree, and the probability of that outcome is the product of the probabilities along that path. For example, the outcome "TH" has probability 1/2 * 1/2 = 1/4, while the outcome "TTTH" has probability 1/2 * 1/2 * 1/2 * 1/2 = 1/16.

Therefore, the probability law for this experiment is:

P("H") = 1/2

P("TH") = 1/4

P("TTH") = 1/8

P("TTTH") = 1/16

In general, the probability of the outcome "T^nH" (where there are n tails before the first heads) is (1/2)^{n+1}. The probability of the experiment going on forever (i.e. never getting heads) is 0, since the probability of this outcome is the limit of (1/2)^{n+1} as n approaches infinity, which is 0.

Learn more about probability

brainly.com/question/11234923

#SPJ11

The person filling the tank realizes something is wrong with the hose. After 30 minutes
he shuts off the hose and tries a different hose. The second hose flows at a constante
of 18 gallons per minute.
How long does it take to completely fill the tank by using the second hose?

Answers

If the person filling the tank realizes something is wrong with the hose. The time  it take to completely fill the tank by using the second hose is: 5.56 minutes.

How to find the time?

Using this formula find  long does it take to completely fill the tank by using the second hose

Let Assume  the tank has a capacity of 100 gallons.

Time =Amount of water ÷ rate

Let plug in the formula

Time = 100 gallons ÷ 18 gallons/minute

Time = 5.56 minutes (Approximately)

Therefore  it would take 5.56 minutes to fill a 100-gallon tank.

Learn more about time here:https://brainly.com/question/26046491

#SPJ1

If the person filling the tank realizes something is wrong with the hose. The time  it take to completely fill the tank by using the second hose is: 5.56 minutes.

How to find the time?

Using this formula find  long does it take to completely fill the tank by using the second hose

Let Assume  the tank has a capacity of 100 gallons.

Time =Amount of water ÷ rate

Let plug in the formula

Time = 100 gallons ÷ 18 gallons/minute

Time = 5.56 minutes (Approximately)

Therefore  it would take 5.56 minutes to fill a 100-gallon tank.

Learn more about time here:https://brainly.com/question/26046491

#SPJ1

The line plot represents data collected from a used bookstore.


Which of the following describes the spread and distribution of the data represented?

The data is almost symmetric, with a range of 9. This might happen because the bookstore offers a sale price for all books over $6.
The data is skewed, with a range of 9. This might happen because the bookstore gives away a free tote bag when you buy a book over $7.
The data is bimodal, with a range of 4. This might happen because the bookstore sells most books for either $3 or $6.
The data is symmetric, with a range of 4. This might happen because the most popular price of a book at this store is $4.

Answers

The best description of the data on the line plot is: "D. The data is symmetric, with a range of 4. This might happen because the most popular price of a book at this store is $4."

What is a Symmetric Data on a Line Plot?

A symmetric data on a line plot means that the data is evenly distributed around the center. In other words, the data points on one side of the center are mirror images of the data points on the other side of the center.

For example, the set of data values displayed on the line plot shows that the data points on one side of the line (the center) are balanced by the data points on the other side of the line. This indicates that the data is evenly distributed and has no significant skewness or bias towards one side.

The range of the data = 6 - 2 = $4.

The mode is also $4

Therefore, the correct option is: option D.

Learn more about symmetric data set on:

https://brainly.com/question/27900879

#SPJ1

Quadrilateral DEFG is a parallelogram. Kaye uses its properties in completing the
table.

Answers

The correct  answer and the correct option is A.

How to determine the value?

It is given that  DEFG is a parallelogram.

Draw the diagonals DF and EG. Place point H where DF and EG intersect.

In triangle HGD and HEF

∠HGD ≅ ∠HEF                            (Alternate Interior angle)

∠HDG ≅ ∠HFE                      (Alternate Interior angle)

By the definition of a parallelogram, the opposite sides of a parallelogram are congruent.

DG ≅ EF                                      (Opposite sides of parallelogram)

According to ASA postulate, two triangles are congruent if any two angles and their included side are equal in both triangles.

So, by using ASA criterion for congruence we get,

ΔDGH ≅ ΔFEH

Since corresponding sides of congruent triangles are congruent, therefore

GH ≅ EH                      (CPCTC)

DH ≅ FH                     (CPCTC)

Option A is correct.

Learn  more about congruent triangles on https://brainly.com/question/22062407

#SPJ1

Which equation has roots of +_ 3

Answers

From the list of options the equation with roots of ±3 is: (d) (x + 0)^2 = 3^2

Which equation has roots of +_ 3

The equation that has roots of ±3 is:

(x - 3)(x + 3) = 0

Expanding the left side of the equation using FOIL method, we get:

x^2 - 9 = 0

Therefore, the equation with roots of ±3 is:

x^2 - 9 = 0

Add 9 to both sides

x^2 = 9

Express 9 as 3^2

x^2 = 3^2

So, we have

(x + 0)^2 = 3^2

Therefore, the equation with roots of ±3 is: (d) (x + 0)^2 = 3^2

Read more about equation at

https://brainly.com/question/148035

#SPJ1

The point-slope form of the equation of a line that passes through points (8, 4) and (0, 2) is y−4=1/4(x−8) . What is the slope-intercept form of the equation for this line?

Answers

Answer:

y = 1/4x + 2

Step-by-step explanation:

The general form of the point-slope form is

[tex]y-y_{1}=m(x-x_{1})[/tex], where (x1, y1) are any point on the line and m is the slope

We can convert the point-slope form of an equation into the slope-intercept form by isolating y on the left-hand side of the equation.  To do this, we'll have to distribute to m to both x and -x1 and add y1 to both sides:

[tex]y-4=1/4(x-8)\\y-4=1/4x-2\\y=1/4x+2[/tex]

Now, we can check the the slope-intercept form is correct by plugging in the (0, 2) for x and y and also (8, 4) for x and y.  If the equation is true, then we've correctly converted the point-slope form to the slope-intercept form:

Plugging in (0, 2) for x and y in the slope-intercept form:

[tex]2=1/4(0)+2\\2=2[/tex]

Plugging in (8, 4) for x and y in the slope-intercept form:

[tex]4=1/4(8)+2\\4=2+2\\4=4[/tex]

In Exercises 25-29, the given set is a subset of C[−1,1]. Which of these are also vector spaces? 1F= {f(x) in C[−1,1] : ∫ f(x)dx=0}−1

Answers

The given set F = {f(x) in C[-1,1] : ∫ f(x)dx = 0 from -1 to 1} is a vector space.

To verify if F is a vector space, we need to check if it satisfies the vector space axioms. Let f(x) and g(x) be elements of F, and c be a scalar.

1. Closure under addition: ∫ (f(x) + g(x))dx = ∫ f(x)dx + ∫ g(x)dx = 0 + 0 = 0. So, (f(x) + g(x)) is in F.
2. Closure under scalar multiplication: ∫ (cf(x))dx = c∫ f(x)dx = c(0) = 0. So, (cf(x)) is in F.
3. Contains zero vector: The zero function, f(x) = 0, satisfies ∫ f(x)dx = 0, and is in F.

Since F satisfies these axioms, it is a vector space.

To know more about vector space click on below link:

https://brainly.com/question/13058822#

#SPJ11

The given set F = {f(x) in C[-1,1] : ∫ f(x)dx = 0 from -1 to 1} is a vector space.

To verify if F is a vector space, we need to check if it satisfies the vector space axioms. Let f(x) and g(x) be elements of F, and c be a scalar.

1. Closure under addition: ∫ (f(x) + g(x))dx = ∫ f(x)dx + ∫ g(x)dx = 0 + 0 = 0. So, (f(x) + g(x)) is in F.
2. Closure under scalar multiplication: ∫ (cf(x))dx = c∫ f(x)dx = c(0) = 0. So, (cf(x)) is in F.
3. Contains zero vector: The zero function, f(x) = 0, satisfies ∫ f(x)dx = 0, and is in F.

Since F satisfies these axioms, it is a vector space.

To know more about vector space click on below link:

https://brainly.com/question/13058822#

#SPJ11

6
Write the sum in expanded form. ∑ = 23 / (i + 23)
i=1

Answers

The sum in expanded form is 23 / 24 + 23 / 25 + 23 / 26 + 23 / 27 + 23 / 28 + 23 / 29.

The sum in expanded form is given by the expression 23 / (i + 23), where i varies from 1 to 6.

The sum in expanded form can be calculated by substituting the values of i from 1 to 6 into the expression 23 / (i + 23) and summing them up.

When i = 1, the expression becomes 23 / (1 + 23) = 23 / 24.

When i = 2, the expression becomes 23 / (2 + 23) = 23 / 25.

When i = 3, the expression becomes 23 / (3 + 23) = 23 / 26.

When i = 4, the expression becomes 23 / (4 + 23) = 23 / 27.

When i = 5, the expression becomes 23 / (5 + 23) = 23 / 28.

When i = 6, the expression becomes 23 / (6 + 23) = 23 / 29.

Therefore, the sum in expanded form is 23 / 24 + 23 / 25 + 23 / 26 + 23 / 27 + 23 / 28 + 23 / 29.

To learn more about sum here:

brainly.com/question/30195662#

#SPJ11

The sum in expanded form is 23 / 24 + 23 / 25 + 23 / 26 + 23 / 27 + 23 / 28 + 23 / 29.

The sum in expanded form is given by the expression 23 / (i + 23), where i varies from 1 to 6.

The sum in expanded form can be calculated by substituting the values of i from 1 to 6 into the expression 23 / (i + 23) and summing them up.

When i = 1, the expression becomes 23 / (1 + 23) = 23 / 24.

When i = 2, the expression becomes 23 / (2 + 23) = 23 / 25.

When i = 3, the expression becomes 23 / (3 + 23) = 23 / 26.

When i = 4, the expression becomes 23 / (4 + 23) = 23 / 27.

When i = 5, the expression becomes 23 / (5 + 23) = 23 / 28.

When i = 6, the expression becomes 23 / (6 + 23) = 23 / 29.

Therefore, the sum in expanded form is 23 / 24 + 23 / 25 + 23 / 26 + 23 / 27 + 23 / 28 + 23 / 29.

To learn more about sum here:

brainly.com/question/30195662#

#SPJ11

Lol I hav no idea I suck at math TvT

Answers

Answer:

It's 6444

Step-by-step explanation:

If the answer of the number x multiplied by 2 is 4296 that means that the value of x is 2148.

So if the number is 2148 and we really need to multiplied it by 3 we get 6444.

Hope this helps :)

Pls brainliest...

can someone help me please im desperate

Answers

Explanation: A linear function would be a diagonal line from left to right either moving up or down in direction. An exponential function would be a straight line on the x axis from left or right until it reaches y axis, then a sharp curve up or down. A quadratic function would be a U shape either facing up or down.

Linear equation: y = mx + b
Exponential equation: y = abˣ
Quadratic function: y = axˣ + bx + c

The graph listed in the picture would be a quadratic function according to the explanation.

Find an estimate for the unicity distance (as an integer) for the Vigenere cipher with m= 5. If your calculations yield a decimal you should select the next higher integer. For example, if your calculations yield 3.25, you should select 4 as your answer. a. 5b. 8c. 3d. 10

Answers

The Vigenere cipher is a polyalphabetic substitution cipher in which the plaintext is encrypted using a series of Caesar ciphers based on a keyword. The length of the keyword determines the periodicity of the cipher, which is known as the key length. The unicity distance of a cipher is the length of ciphertext required to uniquely determine the key used to encrypt it.

For the Vigenere cipher with a key length of m = 5, we can estimate the unicity distance by considering the number of possible keys and the probability of a random key being the correct one.

The Vigenere cipher has a total of 26^m possible keys, since each character in the key can be any of the 26 letters of the alphabet. For m = 5, this gives a total of 11,881,376 possible keys.

To estimate the probability of a random key being the correct one, we can consider the index of coincidence (IOC) of the ciphertext. The IOC is a measure of how likely it is that two randomly selected letters from the ciphertext are the same, and it is related to the frequency distribution of letters in the plaintext.

For a Vigenere cipher with a key length of m, the IOC of the ciphertext is expected to be close to 1/26, which is the IOC of a random sequence of letters. However, the IOC will be higher for certain key lengths and lower for others, depending on the frequency distribution of letters in the plaintext.

For a key length of m = 5, we can estimate the IOC of the ciphertext as follows. Let C_i be the number of occurrences of the i-th letter of the alphabet in the ciphertext, and let N be the total number of letters in the ciphertext. Then the IOC is given by:

IOC = ∑(C_i*(C_i-1))/(N*(N-1))

Using this formula, we can calculate the IOC of the ciphertext for various key lengths and compare it to the expected IOC of 1/26. If the IOC is significantly higher than 1/26 for a certain key length, then it is likely that the key length is a multiple of that length.

Assuming that the plaintext has a uniform frequency distribution of letters, we can estimate the IOC of the ciphertext for a key length of m = 5 as follows. The expected frequency of each letter in the ciphertext is 1/26, so we can calculate the expected number of occurrences of each pair of letters as:

E(C_iC_j) = (N-1)/26^2

where i and j are different letters of the alphabet. The expected number of pairs of letters with the same value is then:

E(C_iC_i) = E(C_1C_1) + E(C_2C_2) + ... + E(C_26C_26)
= 26*(N-1)/26^2
= (N-1)/26

Using this expected value and the actual counts of each pair of letters in the ciphertext, we can calculate the IOC as:

IOC = ∑(C_iC_i - E(C_iC_i))/((N*(N-1))/(26*26))

where the sum is over all pairs of letters i and j, and C_iC_j is the number of occurrences of the pair of letters i and j in the ciphertext.

Using a sample ciphertext, we find that the IOC for m = 5 is around 0.043, which is higher than the expected IOC of 0.0385 for a random sequence of letters. This suggests that the key length is likely to be a multiple of 5.

To estimate the unicity distance, we need to find the smallest value of k such that the number

To learn more about substitution click:
https://brainly.com/question/28348989

#SPJ1

The correct option among the given choices is (a) 5.

What is  unicity distance?

The length of ciphertext required to break the cipher with a certain level of confidence is referred to as the unicity distance. The unicity distance for the Vigenere cipher with a key length of m is approximately:

L ≈ m(log26 − logPm)

where Pm is the probability that two random sequences of length m have at least one letter in common, which can be approximated as:

Pm ≈ 1 − (1/26)m

For m = 5, we have:

P5 ≈ 1 − (1/26)^5 ≈ 0.99972

Plugging this into the formula for L, we get:

L ≈ 5(log26 − logP5) ≈ 5(3.401 − 0.0003) ≈ 17

Rounding up to the nearest integer, we get an estimate of 17 for the unicity distance. Therefore, the correct option among the given choices is (a) 5.

know more about  integer visit :

https://brainly.com/question/15276410

#SPJ1

select all that apply. for r, ≤ is a: a. linear order b. strict partial order c. (non-strict) d. partial order e. well-ordering order

Answers

For the relation "≤", the correct options: a. Linear order, d. Partial order, e. Well-ordering order


Hi! I'd be happy to help you with this question. Let's go through each option and determine if it applies to the relation "≤" (less than or equal to).

a. Linear order: A linear order is a partial order in which every pair of elements is comparable. Since "≤" allows us to compare any two elements in a set, it is a linear order.

b. Strict partial order: A strict partial order is a binary relation that is irreflexive (no element is related to itself) and transitive. "≤" is not a strict partial order because it is not irreflexive (an element can be related to itself, e.g., a≤a).

c. (non-strict): This term is incomplete and cannot be properly evaluated. Please provide more context or a complete term.

d. Partial order: A partial order is a binary relation that is reflexive, antisymmetric, and transitive. "≤" satisfies these conditions, so it is a partial order.

e. Well-ordering order: A well-ordering is a linear order in which every non-empty subset has a least element. "≤" satisfies this condition, so it is a well-ordering order.

Learn more about partial order here:

https://brainly.com/question/14312528

#SPJ11

Expand and Simplify 6(a+2)+2(a-1)

Answers

Step-by-step explanation:

6(a+2)+2(a-1)

=6a+12+2a-2

=8a+10

Ans: 8a+10

Expanding and simplifying

6(a+2)+2(a-1), we get:

6(a+2)+2(a-1) = 6a + 12 + 2a - 2

6(a+2)+2(a-1) = 8a + 10

Therefore, 6(a+2)+2(a-1) simplifies to 8a + 10.

write a function file [a, b, i] gemetry ( across section, area, orientation) that calculates the perimeter of a beam given the desired cross section

Answers

This would calculate the perimeter of a square beam with an area of 25 square units, oriented horizontally.

```
function [perimeter] = geometry(across_section, area, orientation)
   % Calculate the perimeter of a beam given the desired cross section

   % Define constants for the shape of the cross section
   switch across_section
       case 'square'
           side_length = sqrt(area);
           num_sides = 4;
       case 'circle'
           radius = sqrt(area / pi);
           num_sides = 0; % Circles have no sides
       case 'rectangle'
           aspect_ratio = 2; % Set this to whatever you need for your application
           width = sqrt(area / aspect_ratio);
           height = width * aspect_ratio;
           num_sides = 4;
       otherwise
           error('Unknown cross section type');
   end

   % Calculate the perimeter based on the number of sides and shape
   switch across_section
       case 'circle'
           perimeter = 2 * pi * radius;
       otherwise
           perimeter = num_sides * (width + height);
   end

   % Adjust the perimeter based on the orientation
   switch orientation
       case 'horizontal'
           % No adjustment necessary
       case 'vertical'
           % Swap the width and height
           temp = width;
           width = height;
           height = temp;
       otherwise
           error('Unknown orientation type');
   end
end
```

To use this function, you would call it with the desired values for `across_section`, `area`, and `orientation`. For example:

```
perimeter = geometry('square', 25, 'horizontal');
```

This would calculate the perimeter of a square beam with an area of 25 square units, oriented horizontally.

Visit here to learn more about  circle : https://brainly.com/question/29142813
#SPJ11

rejecting the null hypothesis means that the sample outcome is very unlikely to have occurred if h0 is true bartely. true or false

Answers

True, rejecting the null hypothesis means that the sample outcome is very unlikely to have occurred if H0 (the null hypothesis) is true.

This is because the null hypothesis is rejected only when the results are statistically significant, indicating that the observed sample data is unlikely to have occurred by chance alone if the null hypothesis were true.

The statement "The null hypothesis is a claim about a population parameter that is assumed to be false until it is declared false" is false. The null hypothesis is denoted by H0 assumes that the claim you are trying to prove did not happen. It is a claim about a population parameter that is assumed to be true until it is declared false.

To learn more about the “null hypothesis” refer to the https://brainly.com/question/4436370

#SPJ11

When a discount of 33% of the marked price of a radio is allowed , the radio is sold for $54. How much discount does Raymond get when buying the radio?

Answers

Raymond gets a discount of $27.

Let the marked price of the radio be 'x'.

According to the problem, a discount of 33% is given, which means that the selling price is 67% of the marked price.

So, the selling price of the radio is 67% of x, which is given as $54 in the problem.

Hence, 67% of x = $54

Solving for x, we get x = $80

The discount amount is the difference between the marked price and selling price, which is $80 - $54 = $26.

Therefore, Raymond gets a discount of $26.

Learn more about discount

https://brainly.com/question/23865811

#SPJ4

problem 6: what is the bias? your answer should be be two decimal places, example would be 2.23.

Answers

if the bias is calculated as 2.234, you would round it to 2.23 since the third digit, 4, is less than 5.

I can explain how to represent a number with two decimal places.
When a number is represented with two decimal places, it means that it has two digits after the decimal point. For example, the number 2.23 has two decimal places, with the digits 2 and 3 after the decimal point.


Once you have calculated the bias or have the number you want to represent with two decimal places, you can round the number accordingly. To round a number to two decimal places:


1. Identify the second digit after the decimal point.
2. Look at the third digit after the decimal point.
3. If the third digit is 5 or greater, add 1 to the second digit. If it is less than 5, leave the second digit unchanged.
4. Remove all digits after the second decimal place.


For example, if the bias is calculated as 2.234, you would round it to 2.23 (since the third digit, 4, is less than 5).

to learn about decimals click here -

brainly.com/question/30876700

#SPJ11

What is 10% as a whole number??

HELP

Answers

Answer: 10

Step-by-step explanation:

Computer problem. For the logistic model, y' = 100y(1 - y), y(0) = 0.1, solve the ODE for 0 <= t <= 10 using the implicit Euler's method with h = 0.2.

Answers

The table of the approximate values of y:

t y

0.0 0.100

0.2 0.126

0.4

How to computer problem for the logistic model?

To use the implicit Euler's method to solve the logistic model ODE:

First, we need to set up the difference equation for the implicit Euler's method. The formula for the implicit Euler's method is:

[tex]y_n+1 = y_n + h*f(t_n+1, y_n+1)[/tex]

where h is the step size, f(t,y) is the right-hand side of the differential equation, and [tex]y_n[/tex] and [tex]y_n+1[/tex] are the approximations of the solution at times [tex]t_n[/tex] and [tex]t_n+1[/tex], respectively.

For the logistic model, we have y' = 100y(1-y), so f(t,y) = 100y(1-y).

Using the implicit Euler's method with h = 0.2, we have:

[tex]t_0 = 0, y_0 = 0.1\\t_1 = t_0 + h = 0.2\\y_1 = y_0 + hf(t_1, y_1) = y_0 + 0.2f(t_1, y_1)\\[/tex]

Substituting f(t,y) and the values for [tex]t_1[/tex] and [tex]y_0,[/tex] we get:

[tex]y_1 = 0.1 + 0.2100y_1*(1-y_1)\\[/tex]

Simplifying and rearranging, we get:

[tex]y_1^2 - (5/2)*y_1 + 1/20 = 0[/tex]

Using the quadratic formula, we get:

[tex]y_1 = (5/4) \pm \sqrt((5/4)^2 - 4*(1/20))/2\\y_1 = (5/4) \pm \sqrt(25/16 - 1/5)/2\\y_1 \approx (5/4) \pm \sqrt(109)/20\\y_1 \approx 0.126 or y_1 \approx 0.019\\[/tex]

Since the logistic model represents population growth, we choose the positive solution [tex]y_1[/tex] ≈ 0.126.

Now we can repeat this process for each time step:

[tex]t_2 = t_1 + h = 0.4\\y_2 = y_1 + 0.2f(t_2, y_2) = y_1 + 0.2100y_2(1-y_2\\y_2 \approx 0.198\\t_3 = t_2 + h = 0.6\\y_3 = y_2 + 0.2f(t_3, y_3) = y_2 + 0.2100y_3(1-y_3)\\y_3 0.256\\t_4 = t_3 + h = 0.8\\y_4 = y_3 + 0.2f(t_4, y_4) = y_3 + 0.2100y_4(1-y_4)\\y_4 \approx 0.300\\t_5 = t_4 + h = 1.0\\y_5 = y_4 + 0.2f(t_5, y_5) = y_4 + 0.2100y_5(1-y_5)\\y_5 \approx 0.329\\[/tex]

We can continue this process for each time step up to t=10. Here's the table of the approximate values of y:

t y

0.0 0.100

0.2 0.126

0.4

Learn more about implicit Euler's

brainly.com/question/30888267

#SPJ11

pls help

41) give that s(-1/6)=0, factor as completely as possible: s(x)=36x^3+36x^2-31x-6.

45) let p(x)=x^3-5x^2+4x-20. verify that p(5)=0 and find the other roots of (p(x)=0.

46) let q(x)=2x^3-3x^2-10x+25. show q(-5/2)=0 and find the other roots of 1(x)=0

56) if f(x)=x^6-6x^4+17x^2+k, find the value of k for which (x+1) is a factor of f(x). when k has this value, find another factor of f(x) of the form (x+a), where a is a constant.

Answers

41) s(-1/6)=0

=> 36*(-1/6)^3 + 36*(-1/6)^2 - 31*(-1/6) - 6 = 0

=> -12 + 72 + 31 - 6 = 0

=> 85 = 0

So, s(x) = 36x^3 + 36x^2 - 31x - 6

Factors completely as:

(3x+1)(12x^2 - 5x - 6)

45) p(x) = x^3 - 5x^2 + 4x - 20

=> p(5) = 125 - 75 + 20 - 20 = 0

Using the rational zeros theorem, the possible zeros are ±1, ±5/2, ±4.

Testing these, -4 is also a zero.

So the roots are -4, 5, -5/2.

46) q(-5/2) = 2(-5/2)^3 - 3(-5/2)^2 - 10(-5/2) + 25

=> -25 - 45 + 50 + 25 = 5

So q(-5/2) = 0

Other roots: Factoring as (2x + 5)(x^2 - x - 5)

=> -5, -1, -2.

56) f(x) = x^6 - 6x^4 + 17x^2 + k

For (x+1) to be a factor, the remainder should be 0 when f(x) is divided by (x+1).

f(-1) = -1 - 6 + 17 + k

=> k = 10

So when k = 10, (x+1) is a factor.

Again, remainder should be 0 when f(x) is divided by (x+a) for (x+a) to be a factor.

f(-a) = -a^6 + 6a^4 - 17a^2 + 10

Set this equal to 0 and solve for a. You'll get a = -3 or 2.

So when k = 10, f(x) also has (x-3) as a factor.

PLEASE HELP ME!
7.
Find the circumference. Leave your answer in terms of .
5.7 cm
A. 11.4 cm
B. 8.55 cm
C. 2.85m cm
D. 5.7

Answers

The circumference of a circle of radius 5.7 cm is given as follows:

A. 11.4π cm

What is the measure of the circumference of a circle?

The circumference of a circle of radius r is given by the equation presented as follows:

C = 2πr.

The radius for this problem is given as follows:

r = 5.7 cm.

Hence the circumference of the circle is given as follows:

C = 2 x π x 5.7

C = 11.4 cm.

Meaning that option A is the correct option.

More can be learned about the circumference of a circle at brainly.com/question/12823137

#SPJ1

Select the correct answer from each drop-down menu. The general form of the equation of a circle is x2 + y2 + 42x + 38y − 47 = 0. The equation of this circle in standard form is____.

Answers

The general form of the equation of a circle is (x - h)² + (y - k)² = r², where (h, k) is the center of the circle and r is the radius.

To convert the general form of the equation of a circle to standard form, we need to complete the square for both x and y.

(x^2 + 42x) + (y^2 + 38y) = 47

(x^2 + 42x + 441) + (y^2 + 38y + 361) = 47 + 441 + 361

(x + 21)^2 + (y + 19)^2 = 749

Therefore, the equation of the circle in standard form is (x + 21)² + (y + 19)² = 749.

Dylan wants to purchase a string of lights to put around the entire perimeter of the semicircular window shown below.

Answers

The shortest length Dylan should purchase given that the semicircular window has a diameter of 35 inches is 90 inches (option B)

How do i determine the shortest length that Dylan should purchase?

In order to obtain the shortest length, we shall determine the perimeter of the semicircle window. This is illustrated below:

Diameter of semicircular window = 35 inchesRadius of semicircular window (r) = Diameter / 2 = 35 / 2 = 17.5 inchesPi (π) = 3.14Perimeter of semicircular window (P) =?

P = πr + 2r

P = (3.14 × 17.5) + (2 × 17.5)

P = 54.95 + 35

P = 90 inches

Thus, we can conclude that the shortest length Dylan should purchase is 90 inches (option B)

Learn more about perimeter of semicircle:

https://brainly.com/question/29123640

#SPJ1

Complete question:

Please attached photo

At a concession stand five hot dogs and four hamburgers cost $13.25; four hot dogs and give hamburgers cost $13.75. Find the cost of one hot dog and the cost of one hamburger.

Answers

So for this problem lets call hot dogs x and hamburgers y. We know that 5 hot dogs and 4 hamburgers costs $13.25. This can be written as the equation

5x+4y=13.25

Similarly, we know that 4 hotdogs and 5 hamburgers cost $13.75. This gives us the equation

4x+5y=$13.75

Then solve the systems of equations.

If the sphere shown above has a radius of 10 units, then what is the approximate volume of the sphere?

Answers

Answer:

V = 4188.97

Step-by-step explanation:

Formula for volume of a sphere is 4/3(pi)(r^3)

Using the formula for volume of a sphere, we plug in (4/3 * pi * 10^3).

create an explicit function to model the growth after N weeks

Answers

since there were first 135 ants in the colony and it multiplies by 2 every week f(n)=135*2^(n-1)

Tori's scout troop got a new bag of 500 cotton balls in assorted colors to use for crafts. She randomly grabbed some cotton balls out of the bag, looked at them, and put them back in the bag. Here are the colors she grabbed: pink, yellow, blue, yellow, pink, pink, blue, yellow, pink, blue, blue, yellow, pink Based on the data, estimate how many yellow cotton balls are in the bag.

Answers

Based on the data and probability, the number of yellow cotton balls in the bag is 154.

Given that,

Tori's scout troop got a new bag of 500 cotton balls in assorted colors to use for crafts.

She randomly grabbed some cotton balls out of the bag, looked at them, and put them back in the bag.

Total number of cotton balls = 500

The colors she grabbed are :

pink, yellow, blue, yellow, pink, pink, blue, yellow, pink, blue, blue, yellow, pink.

Out of 13 picks, number of yellow balls got = 4

Probability of getting yellow ball = 4/13

Number of yellow balls in 500 balls = 4/13 × 500 = 153.846 ≈ 154

Hence the number of yellow cotton balls in the bag is 154 balls.

Learn more about Probability here :

https://brainly.com/question/16359320

#SPJ1

Other Questions
steve hewitt, city administrator, asks all emergency and rescue personnel to create new plans to efficiently help and rescue people in case the city faces future tornados.Manager Sells Decision ______________Manager presents tentative decision subject to change ______________Manager presents problem, get suggestions, make decisions ______________Manager permits subordinates to function within limits defined by superiors ______________ the exchange rate between japanese yen and indian rupee was 1.74/rupee. how many will you receive if you sell rupee 500?870 500 4287.36 1,740 What are two advantages to an autocratic form of government This is volume and factors and im having a hard time with it, please help. Consider the following hypothesis test.H0: p = 0.30Ha: p 0.30A sample of 400 provided a sample proportionp = 0.285.(a)Compute the value of the test statistic. (Round your answer to two decimal places.)(b)What is the p-value? (Round your answer to four decimal places.)p-value =(d)What is the rejection rule using the critical value? (Round your answer to two decimal places. If the test is one-tailed, enter NONE for the unused tail.)test statistic test statistic A plane is 111 mi north and 189 mi east of an airport. Find x, the angle the pilot should turn in order to fly directly to the airport. Round your answer to the nearest tenth of a degree. Fill in the blanks.The number of cycles per second of a point in simple harmonic motion is its _______. A rectangular pyramid is shown in the figure. A rectangular pyramid with a base of dimensions 7 centimeters by 5 centimeters. The two large triangular faces have a height of 7.6 centimeters. The two small triangular faces have a height of 8 centimeters. What is the surface area of the pyramid? 64.1 cm2 93.2 cm2 128.2 cm2 256.4 cm2 in a species of flower, blue and yellow are incomplete dominance traits that produce green, if the allele are heterozygous. cross a green flower with a yellow flower. what are the resulting phenotypes Help with this math. 11. explain the observed temperature change in terms of heat being lost or gained by the system or surroundings. Write an expression equivalent to 3(x-10). Although qualitative research design is emergent, advance planning is needed for which purpose? A. Deciding how large the sample will be B. Identifying personal biases and presuppositions C. Deciding which instruments and scales will be used to collect data D. Developing a coding scheme for the data f a producer increases the amount of labor used in production, holding other inputs constant, thentotal product will always increase at an increasing rate.total product will decrease at a decreasing rate.total product will continue to increase at a constant rate.total product will eventually increase at a decreasing rate. Consider the circuit in Figure 2 where v_i (t) is a co-sinusoidal input with some radian frequency .(a) What is the phasor gain va/vi in the circuit as 0? (Hint: How does one model a capacitor at DC open or short?) (b) What is the gain va//vi as ? (Hint: think of capacitor behavior in [infinity] limit) (c) In view of the answers to part (a) and (b), and the fact that the circuit is 2nd order (it contains two energy storage elements), try to guess what kind of a filter the system frequency response HW) = implements - lowpass, highpass, or bandpass? The amplitude response |H()| of the circuit will be measured in the lab. If a company is operating at full capacity, the incremental costs of a special order will likely include fixed manufacturing costs. A. True B. False For each of the following solutions, calculate the initial pH and the final pH after adding 0.010 mol of NaOH.For 300.0mL of pure water, calculate the initial pH and the final pH after adding 0.010 mol of NaOH.For 300.0mL of a buffer solution that is 0.240M in HCHO2 and 0.280M in KCHO2, calculate the initial pH and the final pHafter adding 0.010 mol of NaOH.For 300.0mL of a buffer solution that is 0.305M in CH3CH2NH2 and 0.285M in CH3CH2NH3Cl, calculate the initial pHand the final pH after adding 0.010 mol of NaOH. C&A produces three kinds of bread: wheat, white, and multigrain. The data on these products are given below:Wheat White MultigrainDemand (lbs per hour) 50 20 10Changeover time (min) 60 30 45Production rate (lbs per hour) 200 200 200How many pounds of wheat bread should C&A produce with each batch in order to minimize inventory while satisfying demand? the range of the cost driver in which the actual value of the cost driver is expected to fall is called the: 1. An acrobat is on a platform that is 25 feet in the air. She jumps downat an initial vertical velocity of 4 ft/s. Write a quadratic function torepresent the height h of the acrobat t seconds after the jump.If a safety net is placed 5 feet above the ground, how long will it takefor her to land safely on the net?