Find the critical points of the function
f(x)=5sin(x)cos(x)
over the interval [0,2π].
Use a comma to separate multiple critical points. Enter an exact answer.

Answers

Answer 1

The critical point of f(x) in the interval [0,2π] is x = π/4.

To find the critical points of a function, we need to find the values of x where the derivative of the function is zero or undefined.

First, let's find the derivative of f(x):

f'(x) = 5(cos^2(x) - sin^2(x))

Next, we need to find the values of x where f'(x) = 0 or is undefined.

Setting f'(x) = 0:

5(cos^2(x) - sin^2(x)) = 0

cos^2(x) - sin^2(x) = 0

Using the identity cos^2(x) - sin^2(x) = cos(2x), we get:

cos(2x) = 0

This means that 2x = π/2 or 2x = 3π/2, since the cosine function is zero at these angles.

Solving for x, we get:

x = π/4 or x = 3π/4

However, we need to check if these points are in the interval [0,2π]. Only x = π/4 is in this interval.

Therefore, the critical point of f(x) in the interval [0,2π] is x = π/4.

To learn more about critical visit:

https://brainly.com/question/31165916

#SPJ11


Related Questions

find x such that the matrix is equal to its own inverse. a = 5 x −6 −5

Answers

For the value of x = 4/5 (= 0.8) the matrix a = [tex]\left[\begin{array}{cc}5&x\\-6&-5\end{array}\right][/tex] is equal to its own inverse.

The matrix a is given as,

a = [tex]\left[\begin{array}{cc}5&x\\-6&-5\end{array}\right][/tex]

The value of x is such that a is equal to its inverse, that is,

a = [tex]a^{-1}[/tex] ___(1)

Inverse of an matrix, say a, can be calculated using the formula ,

[tex]a^{-1}\\[/tex] = (adjoint of matrix a) / (determinant of matrix a)

Therefore, Adjoint of matrix a = [tex]\left[\begin{array}{cc}-5&-x\\6&5\end{array}\right][/tex]

where,

As element of the adjoint matrix in row 1 and column 1 is cofactor of the matrix a in row 1 and column 1,  

As element of the adjoint matrix in row 1 and column 2 is cofactor of the matrix a in row 1 and column 2,  

As element of the adjoint matrix in row 2 and column 1 is cofactor of the matrix a in row 2 and column 1,

And  as element of the adjoint matrix in row 2 and column 2 is cofactor of the matrix a in row 2 and column 2.

Therefore, determinant of matrix a = (5)(-5) - (-6)(x) = -25 +30x

Thus from the formula of inverse of a matrix we get,

[tex]a^{-1}\\[/tex] = {1/( -25 +30x)} [tex]\left[\begin{array}{cc}-5&-x\\6&5\end{array}\right][/tex]

=[tex]\left[\begin{array}{cc}-5/ (-25 +30x)&-x/ (-25 +30x)\\6/ (-25 +30x)&5/ (-25 +30x)\end{array}\right][/tex] ___(2)

Therefore, equating equation (1) and (2) we get,

[tex]\left[\begin{array}{cc}-5/ (-25 +30x)&-x/ (-25 +30x)\\6/ (-25 +30x)&5/ (-25 +30x)\end{array}\right][/tex] = [tex]\left[\begin{array}{cc}5&x\\-6&-5\end{array}\right][/tex]

⇒ -5/ (-25 +30x) = 5,

-x/ (-25 +30x) = x,

6/ (-25 +30x) = -6,

and 5/ (-25 +30x) = -5

From any one of the above four equation we can equate for the value of x we get,

5/ (-25 +30x) = -5

⇒1/ (-25 +30x) = -1

⇒ 25 - 30x = 1

⇒ 30x = 24

⇒ x =24/30 = 4/5 (=0.8)

To know more about inverse of an matrix here

https://brainly.com/question/30550206

#SPJ4

Given BC = AD = √73.
BA=CD= √5, the slope of BA= CD =1/2
the following statements is true about the quadrilateral?

Answers

The statement that is true about the quadrilateral is

It is a rectangle because the opposite sides in a quadrilateral are congruent.

Option C is the correct answer.

We have,

From the given information,

AB = CD = √73

BC = AD = √5

Slope:

BA = CD = 1/2

BC = AD = 8/3

Now,

This means,

AB = CD = congruent

BC = AD = congruent

Now,

The opposite sides in a quadrilateral are congruent.

This means,

The quadrilateral is a rectangle.

Thus,

The statement that is true about the quadrilateral is

It is a rectangle because the opposite sides in a quadrilateral are congruent.

Learn more about rectangles here:

https://brainly.com/question/15019502

#SPJ1

Determine whether the set R^2 with operations (x1, y1) + (x2, y2) = (x1, x2, y1, y2) and c(x1, y1) = (cx1, cy1) is a vector space. If it is, verify each vector space axiom; if it is not, state all vector space axioms that fail.

Answers

As R² with the given operations satisfies all the vector space axioms, it is indeed a vector space.

To determine whether the set R² with the given operations is a vector space, we need to verify if it satisfies all the vector space axioms.

1. Closure under addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), which is of the same form as the original elements in R². Thus, addition is closed.

2. Commutativity of addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) + (x1, y1). Thus, addition is commutative.

3. Associativity of addition: ((x1, y1) + (x2, y2)) + (x3, y3) = (x1 + x2, y1 + y2) + (x3, y3) = (x1 + x2 + x3, y1 + y2 + y3) = (x1, y1) + (x2 + x3, y2 + y3) = (x1, y1) + ((x2, y2) + (x3, y3)). Thus, addition is associative.

4. Identity element of addition: The additive identity is (0, 0), since (x, y) + (0, 0) = (x + 0, y + 0) = (x, y) for any (x, y) in R².

5. Inverse elements of addition: The additive inverse of (x, y) is (-x, -y), since (x, y) + (-x, -y) = (x - x, y - y) = (0, 0).

6. Closure under scalar multiplication: c(x, y) = (cx, cy), which is of the same form as the original elements in R². Thus, scalar multiplication is closed.

7. Distributivity of scalar multiplication over vector addition: c((x1, y1) + (x2, y2)) = c(x1 + x2, y1 + y2) = (c(x1 + x2), c(y1 + y2)) = (cx1 + cx2, cy1 + cy2) = (cx1, cy1) + (cx2, cy2) = c(x1, y1) + c(x2, y2). Thus, scalar multiplication is distributive over vector addition.

8. Distributivity of scalar multiplication over scalar addition: (c1 + c2)(x, y) = ((c1 + c2)x, (c1 + c2)y) = (c1x + c2x, c1y + c2y) = c1(x, y) + c2(x, y). Thus, scalar multiplication is distributive over scalar addition.

9. Associativity of scalar multiplication: c1(c2(x, y)) = c1(c2x, c2y) = (c1c2x, c1c2y) = (c1c2)(x, y). Thus, scalar multiplication is associative.

10. Identity element of scalar multiplication: The multiplicative identity is 1, since 1(x, y) = (1x, 1y) = (x, y) for any (x, y) in R².

Since R² with the given operations satisfies all the vector space axioms, it is indeed a vector space.

To learn more about vector space here:

brainly.com/question/13058822#

#SPJ11

Find the equation for the plane through Po(2, -3, - 5) perpendicular to the following line. x=2+t, y=-3+5t, z= -3, -20 << Be sure to clearly show all work in order to receive full credit. Put your final answer in the form ax + by + cz = d. The equation of the plane is

Answers

5x - y - 13 = 0  is the equation of the plane

How to find the equation of a plane through a given point that is perpendicular to a given line in three-dimensional space?

To find the equation of the plane, we need two pieces of information: a point on the plane, and the normal vector of the plane.

We are given a point on the plane: P0(2, -3, -5).

To find the normal vector of the plane, we need to use the fact that the plane is perpendicular to the given line. The direction vector of the line is <1, 5, 0>, since the line has parametric equations x=2+t, y=-3+5t, z=-3, and the vector <1, 5, 0> is the coefficient vector of the parameter t in these equations.

Any vector that is perpendicular to <1, 5, 0> will be a normal vector of the plane. One such vector is <5, -1, 0>, which we can verify by taking the dot product of this vector with <1, 5, 0>:

<5, -1, 0> · <1, 5, 0> = 5(1) + (-1)(5) + 0(0) = 0

Thus, the normal vector of the plane is <5, -1, 0>.

Now we can use the point-normal form of the equation of a plane:

ax + by + cz = d

where <a, b, c> is the normal vector of the plane, and (x, y, z) is any point on the plane. Substituting in the values we have:

5(x - 2) - 1(y + 3) + 0(z + 5) = 0

Simplifying:

5x - 10 - y - 3 = 05x - y - 13 = 0

So the equation of the plane is:

5x - y - 13 = 0

Learn more about equation of the plane

brainly.com/question/30465047

#SPJ11

evaluate the double integral by first identifying it as the volume of a solid. ∫ ∫ R (16 − 8y)dA , R = [0, 1] × [0, 1]

Answers

The volume of the given solid is 12 cubic units.



To evaluate the given double integral, we can first identify it as the volume of a solid. In this case, the integrand is (16-8y), which represents the height of the solid at any given point (x,y) in the region R=[0,1]x[0,1].

Thus, to find the volume of this solid, we need to integrate this height function over the entire region R.

∫ ∫ R (16 − 8y)dA = ∫₀¹ ∫₀¹ (16-8y) dx dy

Evaluating this double integral using iterated integration, we get:

∫₀¹ ∫₀¹ (16-8y) dx dy = ∫₀¹ [16x - 8yx] from x=0 to x=1 dy

= ∫₀¹ (16-8y) dy

= [16y - 4y²] from y=0 to y=1

= (16-4) - (0-0)

= 12

Therefore, the volume of the given solid is 12 cubic units.

To know more about double integral, refer here:

https://brainly.com/question/30217024

#SPJ11

write the equation for each translation of the graph of y=|1/2x - 2| +3

a) one unit up
b) one unit down
c) one unit to the left
d) one unit to the right

Answers

Answer:

  a) y = |1/2x -2| +4

  b) y = |1/2x -2| +2

  c) y = |1/2x -3/2| +3

  d) y = |1/2x -5/2| +3

Step-by-step explanation:

You want the equations for the translation of y = |1/2x -2| +3 ...

a) one unit upb) one unit downc) one unit to the leftd) one unit to the right

Translation

The transformation of a function required to translate it (right, up) by (h, k) units is ...

  f(x) = f(x -h) +k

a) Up

For (h, k) = (0, 1), the new function is ...

  y = |1/2x -2| +3 +1

  y = |1/2x -2| +4

b) Down

For (h, k) = (0, -1), the new function is ...

  y = |1/2x -2| +3 -1

  y = |1/2x -2| +2

c) Left

For (h, k) = (-1, 0), the new function is ...

  y = |1/2(x -(-1)) -2| +3

  y = |1/2(x+1) -2| +3

  y = |1/2x -3/2| +3

d) Right

For (h, k) = (1, 0), the new function is ...

  y = |1/2(x -1) -2| +3

  y = |1/2x -5/2| +3

<95141404393>

(10) Synthetic Division
(V^3-2v^2-14v-5)(V+3)

Answers

Answer:

The highlighted part is the answer

Step-by-step explanation:

In a study of helicopter usage and patient? survival, among the 55,673 patients transported by? helicopter, 250 of them left the treatment center against medical? advice, and the other 55,423 did not leave against medical advice. If 60 of the subjects transported by helicopter are randomly selected without? replacement, what is the probability that none of them left the treatment center against medical? advice?

Answers

To calculate the probability that none of the 60 randomly selected subjects left the treatment center against medical advice, we will use some steps.

Those steps are:
1. Calculate the probability of a single subject not leaving against medical advice.
2. Calculate the probability of all 60 subjects not leaving against medical advice.

Step 1:
There are a total of 55,673 patients, out of which 55,423 did not leave against medical advice. So, the probability of a single subject not leaving against medical advice is:
P(not leaving) = (number of patients not leaving) / (total number of patients)
P(not leaving) = 55,423 / 55,673 ≈ 0.9955

Step 2:
Since the subjects are randomly selected without replacement, we need to adjust the probability for each subsequent selection. However, as the sample size (60) is much smaller than the total number of patients (55,673), the difference in probabilities will be negligible. Therefore, we can assume that the probability for each subject remains approximately the same.

To calculate the probability that none of the 60 subjects left the treatment center against medical advice, we will multiply the probability of each subject not leaving against medical advice:

P(all 60 not leaving) = (P(not leaving))^60
P(all 60 not leaving) = (0.9955)^60 ≈ 0.7409

So, the probability that none of the 60 randomly selected subjects left the treatment center against medical advice is approximately 0.7409 or 74.09%.

To learn more about “probability” refer to the  https://brainly.com/question/13604758

#SPJ11

Use the form |x-b| c to write an absolute value inequality that has the solution set 5

Answers

One possible absolute value inequality with the solution set 5 is:

| x - 5 | ≤ 0

What is the absolute value inequality?

An absolute value inequality is a type of inequality that involves the absolute value of a variable. The absolute value of a number is its distance from zero, and it is always a non-negative value.

The general form of an absolute value inequality is:

| f(x) | < a

where f(x) is an algebraic expression involving x, and a is a positive number.

According to the given information

An absolute value inequality with the solution set of 5 can be written in the form:

| x - b | ≤ c

where b is the value around which x can vary and c is the maximum distance from b to the boundary of the solution set.

To obtain a solution set of 5, we need to choose b as the midpoint between the two endpoints of the solution set, which is (5 + 5)/2 = 5.

The distance from b to either endpoint of the solution set is 5 - 5 = 0. Therefore, we can choose c to be any value greater than or equal to 0.

One possible absolute value inequality with the solution set 5 is:

| x - 5 | ≤ 0

To know more about absolute value inequality visit:

brainly.com/question/30201926

#SPJ1

find the volume of the solid lying under the plane 8-2x-y

Answers

The volume of the solid lying under the plane 8-2x-y is 32 cubic units.

To find the volume of the solid lying under the plane 8-2x-y, you need to use a triple integral.

To find the volume, you need to perform a triple integral over the region, integrating the function 8-2x-y with respect to x, y, and z. First, find the limits of integration for x, y, and z by determining the intersections of the plane with the coordinate axes. The intersections are (4,0,0), (0,8,0), and (0,0,8). Next, set up the triple integral as follows:

∭(8-2x-y)dzdydx, with x ranging from 0 to 4, y ranging from 0 to 8-2x, and z ranging from 0 to 8-2x-y.

Evaluate the integral with respect to z first, then y, and finally x. After evaluating, you will find that the volume of the solid is 32 cubic units.

To know more about triple integral click on below link:

https://brainly.com/question/30404807#

#SPJ11

Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series. 1/10 + 1/12 + 1/14 + 1/16 + 1/18 + ... integral^infinity_1 1/2x + 8 dx = ____a. converges b. diverges

Answers

Now, we can evaluate the improper integral of f(x) from 1 to infinity:
integral^infinity_1 1/(2x + 8) dx. Since, the improper integral diverges, the series also diverges by the Integral Test. Therefore, the answer is b. diverges.

Your answer: b. diverges

To apply the Integral Test, we first need to confirm that the function f(x) = 1/(2x + 8) is continuous, positive, and decreasing on the interval [1, ∞). Since the function meets these conditions, we can apply the Integral Test.

Now, let's evaluate the integral:
∫[1,∞] (1/(2x + 8)) dx

To solve this, we can use the substitution method:

let u = 2x + 8, so du = 2 dx. Now, when x = 1, u = 10, and when x → ∞, u → ∞.
Now, the integral becomes:
(1/2) ∫[10,∞] (1/u) du

This is an improper integral, and its form is a p-series where p = 1. We know that a p-series converges if p > 1 and diverges if p ≤ 1. In this case, p = 1, so the integral diverges.
Since the integral diverges, by the Integral Test, the given series also diverges.

Learn more about Diverges:

brainly.com/question/30726405

#SPJ11

need help please I need help right now and thank you

Answers

answer: 9.1

The points are plotted at (-4,6) and (5,5)

i have attatched a photo with the values inputted into the distance formula!

I did exactly what they told me! They won't accept any answers! Please help me FAST! If P=(6,5) and Q=(2,1) are the endpoints of the diameter of a circle, find the equation of the circle.

Answers

The final equation of the circle is: (x - 4)²+(y - 3)² =8.

What us equation of circle?

The set of all points in a plane that are equally spaced from a fixed point known as the centre is described by the equation of a circle.

It is usually written in the form (x-h)² + (y-k)² = r², where (h, k) represents the center and r represents the radius of the circle.

To find the equation of the circle, we need to find the center of the circle and its radius using the given endpoints of the diameter.

The circle's centre corresponds to the diameter PQ's midpoint.Taking the average of the x-coordinates and the average of the y-coordinates will yield the midpoint's coordinates:

x-coordinate of midpoint = (6 + 2)/2 = 4

y-coordinate of midpoint = (5 + 1)/2 = 3

(4, 3) is the center of circle.

The radius of circle is half the distance between the endpoints of      diameter:

r = 1/2 × √((6 - 2)² + (5 - 1)²) = 1/2 × √(16 + 16) = 1/2 × √(2) = 2√(2)

Therefore, the equation of the circle with center (4, 3) and radius 2√(2) is:

(x - 4)² + (y - 3)² = (2×(2))²

Simplifying and expanding  right-hand side:

(x - 4)² + (y - 3)² = 8

To know more about midpoint visit:

https://brainly.com/question/17104055

#SPJ1

evaluate the limit.lim x → 1 xa − 1xb − 1

Answers

The limit lim(x→1) (x^a - 1)(x^b - 1) is equal to ab.

How to evaluate the limit?

To evaluate the limit lim(x→1) (x^a - 1)(x^b - 1), we'll follow these steps:

1. Recognize the given expression: (x^a - 1)(x^b - 1)
2. Apply the limit: lim(x→1) (x^a - 1)(x^b - 1)
3. Factor using the difference of squares: (x - 1)(x^(a-1) + x^(a-2) + ... + 1)(x - 1)(x^(b-1) + x^(b-2) + ... + 1)
4. Cancel out the common factor of (x - 1) in both terms: lim(x→1) (x^(a-1) + x^(a-2) + ... + 1)(x^(b-1) + x^(b-2) + ... + 1)
5. Substitute x = 1 in the remaining expression: (1^(a-1) + 1^(a-2) + ... + 1)(1^(b-1) + 1^(b-2) + ... + 1)
6. Simplify: (1 + 1 + ... + 1)(1 + 1 + ... + 1)
7. Count the number of terms in each parenthesis and multiply them.

Since there are "a" terms in the first parentheses and "b" terms in the second parentheses, the final answer is ab.
So, the limit lim(x→1) (x^a - 1)(x^b - 1) is equal to ab.

Learn more about limit of functions

brainly.com/question/28971475

#SPJ11

Given: ABCD is a rhombus and △ACB ≅ △DBC

Prove: ABCD is a square

Answers

Given: ABCD is a rhombus and △ACB ≅ △DBC

Prove: ABCD is a square

Proof:

1. ABCD is a rhombus, so AB = BC = CD = DA.
2. △ACB ≅ △DBC, so AC = DB and ∠ACB = ∠DBC.
3. Since ABCD is a rhombus, opposite angles are congruent, so ∠ABC = ∠CDA and ∠BCD = ∠DAB.
4. Since ∠ACB = ∠DBC, then ∠ACB + ∠ABC + ∠BCD = ∠DBC + ∠DAB + ∠CDA.
5. Substituting the congruent angles from step 3, we get ∠ABC + ∠CDA + ∠BCD + ∠DAB = 360°.
6. Since the sum of the angles of a quadrilateral is 360°, then ABCD is a quadrilateral.
7. Since all sides and angles of ABCD are congruent, then ABCD is a square.
A B C D is a rhombus so if you turn it sideways you get a square

prove that the function f : r − {2} → r − {5} defined by f (x) = 5x 1 x − 2 is bijective

Answers

The correct answer for the function  is both injective and surjective and it's proves that the function is bijective.

Given:

[tex]f(x) = \dfrac{5x+1}{x-2}[/tex]

If the function is both injective and surjective, the function is bijective:

Check Injective:

For every value in input in the function, their always exist a different output.

for [tex]x =1[/tex]

[tex]f(x)= \dfrac{5(1)+1}{1-2} \\\\= -6[/tex]

for [tex]x=3[/tex]

 [tex]f(x)= \dfrac{5(3)+1}{3-2} \\\\= 16[/tex]

As value for different output is different, function is Injective;

To check Surjectivity:

Show that for every y ∈ R −{5}, there exists an x ∈ R −{2} such that f (x) = y.

Let y ∈ R − {5}.  find an x ∈ R − {2} such that f (x) = y.

Solve f (x) = y for x.

[tex]\dfrac{5x + 1}{x-2} = y[/tex]

[tex]5x+1=xy- 2y[/tex]

[tex]xy-5x-2y+1=0[/tex]

[tex]x(y-5)-2y+1=0[/tex]

[tex]x=\dfrac{2y-1}{ y-5}[/tex]

[tex]f(x) = y[/tex]

The function is bijective.

Learn more about Bijective function here:

https://brainly.com/question/32576706

#SPJ12

Sketch the vector field F(r) = -r / ||r||^3 in the xy-plane. Select all that apply. The lengths of the vectors decrease as you move away from the origin. All the vectors point towards the origin. The length of each vector is 1. All the vectors point in the same direction. All the vectors point away from the origin.

Answers

To sketch the vector field F(r) = -r / ||r||^3 in the xy-plane, we can first observe that this is a radial vector field that points towards the origin. As ||r||^3 is the cube of the distance from the origin, the denominator increases much faster than the numerator, causing the lengths of the vectors to decrease as we move away from the origin. Therefore, the first statement "The lengths of the vectors decrease as you move away from the origin. All the vectors point towards the origin" is true.

As for the second statement, "The length of each vector is 1. All the vectors point in the same direction. All the vectors point away from the origin", it is not true for this vector field. The length of each vector depends on the distance from the origin and is not constant. Also, the vectors point towards the origin and not away from it. Therefore, this statement is false.

In summary, the correct answer is: The lengths of the vectors decrease as you move away from the origin. All the vectors point towards the origin.

To sketch the vector field F(r) = -r / ||r||^3 in the xy-plane and determine which statements apply, follow these steps:

1. Recognize that F(r) is a radial vector field with its direction determined by the term -r, which points towards the origin, and its magnitude determined by 1/||r||^3.

2. Notice that as you move away from the origin (increasing the value of ||r||), the magnitude of the vector field decreases because the denominator ||r||^3 increases, making the overall value of the vector field smaller.

3. Observe that all vectors point towards the origin because of the negative sign in the term -r.

4. Since the magnitude of the vector field is determined by 1/||r||^3 and not a constant value, the length of each vector is not 1.

5. As the vector field is radial and determined by the term -r, the vectors do not point in the same direction and do not point away from the origin.

From this analysis, we can conclude that the following statements apply:

- The lengths of the vectors decrease as you move away from the origin.
- All the vectors point towards the origin.

To know more about the vector. Click on the link.

https://brainly.com/question/29740341

#SPJ11

how do i write the inequality of this?​

Answers

Answer:

y <= x+2

Step-by-step explanation:

Finding the curve equation,

the slope is 1 and the y-intercept is 2. Hence,

y = x + 2

Since the thing is under the graph,

y < x + 2

Since it is a solid line,

y <= x + 2

Hope this helps and be sure to mark this as brainliest! :)

calculate by double integration the area of the bounded region determined by the given pairs of curves. x^2=8y −x +4y−4=0a) -9/2|b) 9/8|c) 9/2|d) 9|e) 27/2|f) none of these

Answers

The answer is (a) [tex]$-\frac{9}{2}$[/tex].

How to find the area of the bounded region?

To find the area of the bounded region determined by the curves [tex]$x^2=8y[/tex]and x + 4y - 4 = 0, we first need to find the intersection points of the two curves.

From the equation [tex]$x^2=8y$[/tex], we get [tex]$y=\frac{x^2}{8}$[/tex] Substituting this in the equation x + 4y - 4 = 0, we get [tex]$x+4\left(\frac{x^2}{8}\right)-4=0$[/tex], which simplifies to [tex]$x^2+8x-32=0$[/tex]. Solving for x, we get [tex]$x=-4\pm 4\sqrt{3}$[/tex].

Since the parabola [tex]$x^2=8y$[/tex] opens upwards, the area of the bounded region can be calculated as follows:

[tex]Area }=\int_{-4-4 \sqrt{3}}^{4 \sqrt{2}} \int_{\frac{x^2}{8}}^{(4-x) / 4} d y d x[/tex]

Integrating with respect to y first, we get:

[tex]\text { Area }=\int_{-4-4 \sqrt{3}}^{4 \sqrt{2}}\left(\frac{4-x}{4}-\frac{x^2}{8}\right) d x[/tex]

Simplifying and evaluating the integral, we get:

[tex]\text { Area }=\frac{9}{2}+\frac{16 \sqrt{3}}{3}-2 \sqrt{2}[/tex]

Therefore, the answer is (a)[tex]$-\frac{9}{2}$[/tex].

Learn more about area of bounded region

brainly.com/question/29061825

#SPJ11

David then withdrew that money and put it into another bank account with a rate of 5% interest compounded annually. How much money worth of interest did David gain after 4 years?

Answers

David gained approximately $2,155.06 in interest after 4 years.

How to solve

By utilizing the compound interest formula A = P(1 + r/n)^(nt), one can determine the future value of an investment or loan, inclusive of its added interest.

Variables to consider include the initial deposit (P), annual interest rate (r as a decimal), frequency at which it is compounded per year (n) and time (t).

This specific scenario assimilates a principal amount of $10,000 with an annual interest rate of 5% compounded yearly for four years, resulting in an accrued balance of roughly $12,155.06.

Therefore, David gained approximately $2,155.06 in interest after 4 years.

Read more about compound interest here:

https://brainly.com/question/24274034

#SPJ1

If David deposited $10,000 into a bank account with a 5% interest rate compounded annually, how much interest did he gain after 4 years?

Let S = {v1 , , vk} be a set of k vectors in Rn, with k < n. Use a theorem about the matrix equation Ax = b to explain why S cannot be a basis for R^n Let A be an mx n matrix. Consider the statement. "For each b in R^m, the equation Ax -b has a solution." Because of a fundamental theorem about such matrix equations, this statement is equivalent to what other statements? Choose all that apply A. The columns of A span R^m B. Each b in R^m is a linear combination of the columns of A C. The rows of A span R^n D. The matrix A has a pivot position in each row. E. The matrix A has a pivot position in each column.

Answers

S cannot be a basis for [tex]R^{n }[/tex]

What is Matrix ?

A matrix is a rectangular array of numbers or symbols arranged in rows and columns. Matrices are commonly used in mathematics, physics, engineering, computer science, and other fields to represent systems of linear equations, transformations, and other mathematical objects and operations.

The statement "For each b in  [tex]R^{m }[/tex], the equation Ax - b has a solution" is equivalent to the following statements:

A. The columns of A span [tex]R^{m }[/tex]

B. Each b in [tex]R^{m }[/tex] is a linear combination of the columns of A.

E. The matrix A has a pivot position in each column.

To explain why S cannot be a basis for  [tex]R^{n }[/tex] , we can use the fact that a set of vectors S = {v1, ..., vk} is a basis for  [tex]R^{n }[/tex] if and only if the matrix whose columns are the vectors in S is invertible. In this case, since k < n, the matrix whose columns are the vectors in S cannot be invertible because it has more columns than rows.

Therefore, S cannot be a basis for [tex]R^{n }[/tex].

To learn more about Matrix from given link.

https://brainly.com/question/31017647

#SPJ1

Has an album that holds. 500 Each page of the album holds 5 photo. If 59​% of the album is​ empty, how many pages are filled with photos​?

Answers

The number of pages with photos rounded to the nearest whole number is 204 pages.

First, we need to find out how many pages of the album are empty. Since 59% of the album is empty, that means 41% of the album is filled with photos.

To find out how many photos are in the album, we multiply the number of pages by the number of photos per page:

500 pages x 5 photos per page = 2500 photos

To find out how many pages are filled with photos, we need to take 41% of the total number of pages:

500 pages x 0.41 = 205 pages

However, since we're looking for the number of pages with photos rounded to the nearest whole number, we round down to 204 pages. Therefore, each of the 18 students would receive 204/18 = 11.33 pages of photos (rounded to the nearest hundredth).

Learn more about multiplication

https://brainly.com/question/28768606

#SPJ4

Complete Question:

Roy has an album that holds. 500 Each page of the album holds 5 photos. If 59​% of the album is​ empty, how many pages are filled with photos​?

Does anybody know how to solve this problem?

Answers

Answer:

C is correct in case of division

Step-by-step explanation:

A is correct in case of addition

B is correct in case of multiplication

Answer:C

Step-by-step explanation: take the exponent value in the numerator  and subtract the exponent value of the denominator

The temperature of a solution in a science experiment is -4.3C. Mark wants to raise the temperature so that it is positive.

Answers

Mark needs to add heat to the solution in order to elevate the temperature from -4.3°C to a positive value

DEFINE A SPECIFIC HEAT SYSTEM?

The amount of heat needed to increase a substance's temperature by one degree Celsius per gramme is known as its specific heat capacity. It is a characteristic of a substance that is intense and independent of the size or shape of the quantity under consideration. A substance's specific heat capacity is typically indicated by the letters "c" or "s"².

Mark needs to add heat to the solution in order to elevate the temperature from -4.3°C to a positive value.

. The bulk of the solution and its specific heat capacity affect the amount of heat needed.

To know more about specific heat capacity visit:

brainly.com/question/13163208

#SPJ1

Helpppp now Asappppp

Answers

The population density for each animal is given as follows:

Grizzly bear: 0.0003 grizzly bears per acre.Elk: 0.009 elks per acre.Mule deer: 0.0009 mule deer per acre.Bighorn sheep: 0.0002 bighorn sheep per acre.

How to calculate the population density?

The population density is calculated as the division of the total population by the total area.

The area for this problem is given as follows:

2.22 million acres = 2,220,000 acres.

Hence the densities are given as follows:

Grizzly bear: 712/2220000 = 0.0003 grizzly bears per acre.Elk: 20000/2220000 = 0.009 elks per acre.Mule deer: 1900/2220000 = 0.0009 mule deer per acre.Bighorn sheep: 345/2220000 = 0.0002 bighorn sheep per acre.

More can be learned about population density at https://brainly.com/question/26910545

#SPJ1

make (a) the subject of the formula (a)
a/2c
+
b/4 = 2

Answers

Answer:

a=8c-b/2

Step-by-step explanation:

a/2c+b/4=2

find the lcm

lcm=4c

multiply through by lcm 4c

4c×a/2c+4c ×b/4=4c×2

2×a+b×c=8c

2a+bc=8c

subtract bc from both sides

2a+bc-bc=8c-bc

2a=8c-b

To make 'a' subject of formula, divide 2 from both sides

2a/2=8c-b/2

a=8c-b/2

State whether the sequence an=(9n)/√(n^2+1) converges and, if it does, find the limit.
a) converges to (9√2)/2
b) diverges
c) converges to 1
d) converges to 9
e) converges to 0

Answers

The sequence an=(9n)/√(n^2+1) converges to 9/sqrt(1+1)=9/sqrt(2)=9√2/2, so the answer is (a) converges to (9√2)/2.

To see why, we can use the limit comparison test, comparing to a similar sequence bn = 9n/sqrt(n^2), which simplifies to bn = 9/sqrt(n). Since the limit as n approaches infinity of bn is 0, we can use this to find the limit of an by taking the limit of the ratio an/bn:

lim(n->inf) an/bn = lim(n->inf) [(9n)/√(n^2+1)] / [9/sqrt(n)]
= lim(n->inf) sqrt(n) * (n/sqrt(n^2+1))
= lim(n->inf) (n/sqrt(n^2+1)) (since sqrt(n) approaches infinity as n approaches infinity)
= lim(n->inf) (1/sqrt(1+(1/n^2))) = 1/sqrt(1+0) = 1/sqrt(1) = 1.

Since this limit is finite and nonzero, we can conclude that the sequence converges, and its limit is 9/sqrt(2).

To learn more about limit comparison, visit:

https://brainly.com/question/30758037

#SPJ11

What’s the slope of the line

Answers

Answer:

The slope is -3

Step-by-step explanation:

Select two points on the line.  I have selected the points (1,5) and (2,2).  The slope is the change in y over the change in x.  The y values are 2 and 5,  The x values are 2 and 1.  You find the change by subtracting.

[tex]\frac{2-5}{2-1}[/tex] = [tex]\frac{-3}{1}[/tex] = -3

Another way to look at this is seeing the slope as the rise over the run.  If you start at (1,5) and only move right or left and up and down to get to (2,2), you would have to move straight down 3 spaces and then 1 space right.  Down is negative and right is positive, so the slope would be [tex]\frac{-3}{1}[/tex] which equals -3.

Helping in the name of Jesus.

A random sample of 100 customers at a local ice cream shop were asked what their favorite topping was. The following data was collected from the customers.


Topping Sprinkles Nuts Hot Fudge Chocolate Chips
Number of Customers 44 27 12 17


Which of the following graphs correctly displays the data?
a histogram titled favorite topping with the x axis labeled topping and the y axis labeled number of customers, with the first bar labeled chocolate chips going to a value of 17, the second bar labeled hot fudge going to a value of 12, the third bar labeled nuts going to a value of 27, and the fourth bar labeled sprinkles going to a value of 44
a histogram titled favorite topping with the x axis labeled topping and the y axis labeled number of customers, with the first bar labeled hot fudge going to a value of 17, the second bar labeled chocolate chips going to a value of 12, the third bar labeled sprinkles going to a value of 27, and the fourth bar labeled nuts going to a value of 44
a bar graph titled favorite topping with the x axis labeled topping and the y axis labeled number of customers, with the first bar labeled chocolate chips going to a value of 17, the second bar labeled hot fudge going to a value of 12, the third bar labeled nuts going to a value of 27, and the fourth bar labeled sprinkles going to a value of 44
a bar graph titled favorite topping with the x axis labeled topping and the y axis labeled number of customers, with the first bar labeled hot fudge going to a value of 17, the second bar labeled chocolate chips going to a value of 12, the third bar labeled sprinkles going to a value of 27, and the fourth bar labeled nuts going to a value of 44

Answers

The best graph to display the data is C. a bar graph titled favorite topping with the x axis labeled topping and the y axis labeled number of customers, with the first bar labeled chocolate chips going to a value of 17, the second bar labeled hot fudge going to a value of 12, the third bar labeled nuts going to a value of 27, and the fourth bar labeled sprinkles going to a value of 44.

Why is this graph best ?

Categorical data is best represented through a bar graph wherein every distinctive category is illustrated by a rectangular bar in correspondence to the frequency or item count. This display method uses the height or length of each rectangle as its basis.

The customer's preferences on their choice of ice cream toppings were subjected to a categorical survey; hence, it deemed suitable for visual illustration via a bar chart. There are four recognizable component ingredients identified in this survey namely: Sprinkles, Nuts, Hot Fudge, and Chocolate Chips. Each component underlies particular statistical value and described discretely hence a bar graph proves fitting to portray this information.

Find out more on bar graphs at https://brainly.com/question/30243333

#SPJ1

Mai poured 2.4 L into a partilly filled water now there is 10.4

Answers

In a case whereby Mai poured 2.4 L into a partilly filled water now there is 10.4 the best figure that represent this is the second fiqure.

How can the best fiqure be known?

Based on the given information it can be seen that the total volume of the figure is 10.4 which implies that it will take the total volume of of water of 10.4

Considering the second fiqure , it can be deduced that the total volume is 10.4, where one part of the fiqure is X and other bis 2.4, which impies that 10.4 = X + 2.4 which is the expression for the fiqure.

Learn more about figure at:

https://brainly.com/question/29200743

#SPJ1

Other Questions
Each cytochrome has an iron-containing heme group that accepts electrons and then donates the electrons to a more electronegative substance. A 9-pound bag of sugar is being split into containers that hold 3/4 of a pound. How many containers of sugar will the 9-pound bag fill the sample size needed to provide a margin of error of 2 or less with a .95 probability when the population standard deviation equals 11 is a. 10. b. 11. c. 117. d. 116. 30 POINTS!!! Alisha's soccer team is having a bake sale. Alisha decides to bring chocolate chip cookies to sell. There is a proportional relationship between the number of cookies Alisha sells, x, and the total cost (in dollars), y. Alisha sells 6 cookies for $12.00. Which equation shows the relationship between x and y?A: y = 2xB: y = 6xC: y = 12xD: y = 0.5xAnswer only if you know answer ty TyCan somebody help me with thisWhat are the first two steps of drawing a triangle that has all side lengths equal to 6 centimeters?Select from the drop-down menus to correctly complete the statements.Draw a segment (6,9,12) centimeters long. Then from one endpoint, draw a (30,60,90) angle. What value of x does not satisfy the equation sin 2x + sinx = 0? (a) 7/2 (b) 3/2 (c) 271 (d) 3 (e) All Satisfy What value of x does not satisfy the equation sin x + sin x = 0 ? (a) 7/2 (b) 31/2 (c) (d) 2 (e) All Satisfy an aqueous solution is 3.50y mass dextrose (c6h12o6) in water. if the density of the solution is 1.0116 g/ml, calculate the molarity of dextrose in the solution. A coin is tossed 19 times. In how many outcomes do exactly 5 tails occur? a) 95 b) 120 c) 11,628 d) O1,395 360 f) None of the above a uniform cylinder of radius r, mass m, and length l rotates about a horizontal axis that is parallel and tangent to the cylinder. the moment of inertia of the sphere about this axis isa. 1/2MR^2b. 2/3MR^2c. MR^2d. 3/2MR^2e. 3/4MR^2 Maine is home to both the snow shoe hare and the cottontail rabbit. This graph shows how the coloration of the cottontail rabbits have changed between 1850 to 2000. Based on the data, what might you conclude? Select ALL that apply.A. The white rabbits are most likely less camouflaged now than they once wereB. The environment has changed to favor the gray colored rabbitsC. The white rabbits all emigrated to a different areaD. White rabbits all died outE. The gray rabbits has a greater reproductive rate A dietician obtains a sample of the amounts of sugar (in centigrams) in each of 10 different cereals, including Cheerios, Corn Flakes, Fruit Loops and others. 24 30 47 43 7 47 13 44 39 10 Find the mean amount of sugar. - If necessary ROUND to the nearest hundredth place. why is the tea bag initially extracted with deionized water and not dichloromethane? the minimum legal price that can be charged in a market is multiple choice a price floor. a price ceiling. full economic price. nonpecuniary price. Read the first paragraph from "Rikki Tikki Tavi."This is the story of the great war that Rikki-tikki-tavi fought single-handed, through the bath-rooms of the big bungalow in Segowlee cantonment. Darzee, the tailor-bird, helped him, and Chuchundra, the musk-rat, who never comes out into the middle of the floor, but always creeps round by the wall, gave him advice; but Rikki tikki did the real fighting.The author, Rudyard Kipling, gives readers this introduction that is a big hint about the resolution of the story. He never says that Rikki won the war, but we can assume that since he is still alive, he was victorious. Unlike the author of The Dinner Party, Kipling has no desire to surprise or shock the reader by the ending. Instead, he focuses on the action in this classic battle between good and evil. Because of this, the ending of Rikki-tikki-tavi is pretty predictable. Review the story up until its climax: the moment Rikki follows Nagaina into the snake hole.Rewrite the ending from that point with a plot twist that gives the story a surprise or unexpected ending. Remember to tell this in narrative/story form; try to imitate the authors writing style. Make it good! Write at least 10 well-written sentences to create your new ending. While Louis XIV and Kangxi considered themselves to be divinely appointed, their perceptions of their own accountability differed. Explain this contrast between the two rulers. How many chloride ions are in 15.0 mL of a 2.5 molar solution of magnesium chloride? (MgCl2) compute the days' sales in inventory. (round interim calculations to two decimal places, x.xx and round your final answer to the nearest whole day.) the days' sales in inventory = this is section 3.1 problem 14: for y=f(x)= 2 x , x=2, and x=0.2 : y= , and f'(x)x . round to three decimal places unless the exact answer has less decimal places. 3. Would the specific gravity of coffee with cream and sugar be higher or lower than the specific gravity of water? Would it be higher or lower than that of the urine of a well well-hydrated person? Why? 4. What happens to the appearance of your urine on a hot day when you drink only a minimal amount of water? 5. When taking a urine sample why do we not take the first part of the urine? 6. What can drinking only soda do to your urine? can a constant acceleration be the greatest acceleration in a graph