Answer:
76.93 cm²
Step-by-step explanation:
Area of semi-circle = (1/2) · π · r²
r = 7 cm
π = 3.14
Let's solve
(1/2) · 3.14 · 7² = 76.93 cm²
So, the area of the semi-circle is 76.93 cm²
1. CVSTM is having a sale on vitamins. You purchase 2 bottles of multivitamins at
$3.75/bottle, 1 bottle of vitamin D supplement that costs $4.85, and 2 vitamin C
supplement bottles at $2.95/bottle. How much money would be left before tax if you
had $20 to spend on this purchase?
2. You need 2,500 calories a day as a growing teenager who only moderately
exercises. If you consumed a meal at McDonald's that consisted of 1 Quarter
Pounder with cheese (520 calories), 1 small fries (220 calories), and a large Coke
(290 calories), how many calories would you have left to consume the
rest of the day?
3. Your Aunt Barbara gave you $500 to spend on books for your first semester
of college classes. You purchased the recommended biology book at $209.59, the
biology lab manual at $59.33, a psychology book at $121.35, an English book at
$137.95, a math book at $107.14, and the math student workbook at $36.96. How
much more money will you still need to purchase your books for this semester's four
classes?
4. The digestive tract is approximately 30 feet long. Food enters the stomach after
passing through the 10-inch esophagus. How many more inches will food need to
travel prior to exiting the body?
5. You have recently been diagnosed with the flu. Your doctor tells you to take 400 mg
of Tylenol every 4 hours to control your fever. If you purchased a bottle of Tylenol that
contains fifty 200 mg tablets, how many tablets would be left in the bottle after 3 days
if you followed your doctor's orders?
6. The medical assistant takes the oral temperature of every patient upon arrival. The
clinic sees 45 patients each day. How many weeks would a 500-count box of
thermometer probe covers last if the clinic is open 5 days per week?
The left out money = 20- 18.25
= $1.75
How to solveGiven that:
2 bottles of multivitamin = $3.75 x 2 = $7.5
1 bottle of vitamin D = $4.85
2 Vitamin C bottles = $2.95 x 2 = $5.9
The total = 7.5 + 4.85 +5.9 = $18.25
If $20 had to be spent,
The left out money = 20- 18.25
= $1.75
Read more about algebra here:
https://brainly.com/question/22399890
#SPJ1
let a = {0, 3, 4, 5, 7 } and b = {4, 5, 6, 7, 8, 9, 10, 11}. let d be the divides relation. that is, for all (x, y) ∈ a × b, x d y iff x | y.
The ordered pairs in S are {(4, 4), (5, 5)}, and the ordered pairs in S–1 are {(4, 4), (5, 4), (5, 5), (6, 5)}.
The relation S is defined as x S y ⇔ x | y, which means that x divides y.
Using this definition, we can determine which ordered pairs are in S:
(3, 4) is not in S, since 3 does not divide 4
(3, 5) is not in S, since 3 does not divide 5
(3, 6) is not in S, since 3 does not divide 6
(4, 4) is in S, since 4 divides 4
(4, 5) is not in S, since 4 does not divide 5
(4, 6) is not in S, since 4 does not divide 6
(5, 4) is not in S, since 5 does not divide 4
(5, 5) is in S, since 5 divides 5
(5, 6) is not in S, since 5 does not divide 6
Therefore, the ordered pairs in S are:
{(4, 4), (5, 5)}
The relation S–1 is the inverse of S. An ordered pair (a, b) is in S–1 if and only if (b, a) is in S. In other words, (a, b) is in S–1 if and only if b divides a.
Using this definition, we can determine which ordered pairs are in S–1
(4, 3) is not in S–1, since 4 does not divide 3
(5, 3) is not in S–1, since 5 does not divide 3
(6, 3) is not in S–1, since 6 does not divide 3
(4, 4) is in S–1, since 4 divides 4
(5, 4) is in S–1, since 5 divides 4
(6, 4) is not in S–1, since 6 does not divide 4
(4, 5) is not in S–1, since 4 does not divide 5
(5, 5) is in S–1, since 5 divides 5
(6, 5) is in S–1, since 6 divides 5
Therefore, the ordered pairs in S–1 are {(4, 4), (5, 4), (5, 5), (6, 5)}
Learn more about ordered pairs here
brainly.com/question/30805001
#SPJ4
The given question is incomplete, the complete question is:
Let A = {3, 4, 5} and B = {4, 5, 6} and let S be the “divides” relation. That is, for all (x, y) ∈ A x B,
x S y ⇔ x | y.
State explicitly which ordered pairs are in S and S–1.
Let f be a differentiable function. If f(60) = 378 and f '(60) = 6, use a linear approximation to estimate the value of each of the following. (a) f(61) (b) f''(58)
(a) The estimated value of f(61) is 384.
(b) The estimated value of f''(58) is 0.
How to estimate the value of f(61)?(a) Using linear approximation, we have:
f(61) ≈ f(60) + f'(60)(61 - 60)
Substituting the given values, we get:
f(61) ≈ 378 + 6(1)
≈ 384
Therefore, the estimated value of f(61) is 384.
How to estimate the value of f''(58)?(b) Since f is a differentiable function, we can use the second derivative test to estimate f''(58) as follows:
f''(58) ≈ lim h → 0 [tex](f(58 + h) - 2f(58) + f(58 - h)) / h^2[/tex]
Using linear approximation, we have:
f(58 + h) ≈[tex]f(58) + f'(58)h + f''(58)h^2/2[/tex]
f(58 - h) ≈ [tex]f(58) - f'(58)h + f''(58)h^2/2[/tex]
Substituting these values, we get:
f''(58) ≈ lim h → 0[tex][ (f(58) + f'(58)h + f''(58)h^2/2) - 2f(58) + (f(58) - f'(58)h + f''(58)h^2/2) ] / h^2[/tex]
Simplifying and rearranging terms, we get:
f''(58) ≈ lim h → 0[tex][ (f(58 + h) - 2f(58) + f(58 - h)) /[/tex][tex]h^2 - f''(58)h^2][/tex]
Taking the limit as h approaches 0, we get:
f''(58) ≈ f''(58)(0) = 0
Therefore, the estimated value of f''(58) is 0.
Learn more about linear approximation
brainly.com/question/30881351
#SPJ11
A circle has a radius of 5 ft, and an arc of length 7 ft is made by the intersection of the circle with a central angle.
Which equation gives the measure of the central angle, q?
9
75
O
O e-7+5
O9-7-5
Answer:
[tex]x=\frac{7}{5}[/tex]
Step-by-step explanation:
Using degrees, the formula for arc length is [tex]s= r\theta[/tex], where s is the arc length, r is the radius, and θ is the central angle of the arc in radians.
As we have the length of the arc and we are looking for the central angle, we make θ the unknown and solve for it:
[tex]7=5x[/tex]
We simply divide 5 into both sides to conclude that,
[tex]x=\frac{7}{5}[/tex]
Two months ago, the price of a cell phone was
c dollars.
Last month, the price of the phone increased
by 10%.
Write an expression for the price of the phone
last month.
The price of the phone increased by 10% from its initial value c, as indicated by the formula c(1.10) for the previous month's price.
What is the expression?A 10% increase would mean adding 10% of c to c itself if the cost of the phone had been c dollars two months prior. One way to put this is as.
Price last month [tex]= c + 0.10c[/tex]
Simplifying this expression, we can factor out c to get:
Price last month [tex]= c(1 + 0.10)[/tex]
Further, streamlining allows us to assess the expression enclosed in brackets:
If the phone cost c dollars two months ago, then a 10% increase would be 0.1c dollars.
The total of the initial price and the increase, which is:
[tex]c + 0.1c[/tex]
Price last month [tex]= c(1.10)[/tex]
Therefore, The price of the phone increased by 10% from its initial value c, as indicated by the formula [tex]c(1.10)[/tex] for the previous month's price.
Learn more about expression here:
https://brainly.com/question/14083225
#SPJ1
Suppose the distribution of the time X (in hours) spent by students at a certain university on a particular project is gamma with parameters a = 50 and ß = 3. Because a is large, it can be shown that X has approximately a normal distribution. Use this fact to compute the approximate probability that a randomly selected student spends at most 185 hours on the project. (Round your answer to four decimal places.)
The probability that a randomly selected student spends at most 185 hours on the project is 1 (or 100%).
How we find the probability?Calculate the mean and standard deviation of XThe mean of a gamma distribution with parameters a and ß is a/ß², so in this case, the mean is 50/3 = 16.67 hours.
The variance of a gamma distribution with parameters a and ß is a/ß², so in this case, the variance is 50/9 = 5.56 hours. Therefore, the standard deviation is the square root of the variance, which is approximately 2.36 hours.
Convert X to a standard normal variable ZWe can convert X to a standard normal variable Z using the formula:
Z = (X - μ) / σ
where μ is the mean of X and σ is the standard deviation of X. Substituting in the values we calculated in Step 1, we get:
Z = (X - 16.67) / 2.36
To find the probability that a randomly selected student spends at most 185 hours on the project,
we need to find the corresponding Z-score for X = 185 and then find the area under the standard normal curve to the left of that Z-score.
Z = (185 - 16.67) / 2.36 = 69.53
Using a standard normal table or calculator, we can find that the area to the left of Z = 69.53 is essentially 1. Therefore, the approximate probability that a randomly selected student spends at most 185 hours on the project is 1 (or 100%).
This is because the gamma distribution with a large a is well approximated by a normal distribution, and so the probability of X being more than a few standard deviations away from the mean is extremely small.
Learn more about Probability
brainly.com/question/11234923
#SPJ11
which geometric shape could be used to model the building? a building with a quadrilateral base and triangular sides. cone pyramid cylinder sphere
A geometric shape that could be used to model a building with a quadrilateral base and triangular sides is a pyramid.
A geometric shape is a two-dimensional or three-dimensional object that can be described using mathematical formulas and properties. Examples of two-dimensional geometric shapes include squares, circles, triangles, and rectangles. Examples of three-dimensional geometric shapes include cubes, spheres, cylinders, and cones.
Geometric shapes are used in many different fields, including mathematics, science, architecture, engineering, and art. They are important for understanding spatial relationships and for solving problems related to measurement, area, volume, and other geometric properties.
Specifically, the shape would be a triangular pyramid, with the base being a quadrilateral and the sides being triangles.
A cone also has a circular base and curved sides, while a cylinder has circular bases and straight sides. A sphere is a three-dimensional shape with a curved surface, and would not be an appropriate shape to model a building with a quadrilateral base and triangular sides.
To learn more about geometric shape visit:
https://brainly.com/question/2778048
#SPJ4
Answer:
The answer is B. Pyramid I just took the test and got it correct.
Some trees are planted In rows of 10
Complete the formula to find the total number of trees, t, in r rows
The formula to find the total number of trees, t, in r rows is [tex]t = 10 \times r[/tex]
How to find the formula for any trees planted in a row?Sequence and series - A sequence is a list of items/objects which have been arranged in a sequential way. A series can be highly generalized as the sum of all the terms in a sequence. However, there has to be a definite relationship between all the terms of the sequence.
If there are 10 trees planted in each row, then the total number of trees in one row is 10. To find the total number of trees in r rows, we need to multiply the number of trees in one row (10) by the number of rows (r):
[tex]t = 10 \times r[/tex]
To know more about sequence, visit:
brainly.com/question/30262438
#SPJ1
If the trees are planted in rows of 10, then the total number of trees in r rows can be found using the formula: t = 10r
What is sequence and series?A sequence is an ordered list of numbers or other mathematical objects, such as functions or geometric figures, that follow a certain pattern or rule. A sequence can be finite or infinite and can be specified using a formula or a recursive rule.
A series is a sum of the terms in a sequence, typically written using the sigma notation Σ
where t is the total number of trees and r is the number of rows. This formula simply multiplies the number of trees in each row (which is 10) by the number of rows, to get the total number of trees.
To know more about rows visit:
https://brainly.com/question/9073762
#SPJ1
h(x)=6x^-4-3x^-6 find the indicated deirvaitive for the function
The derivative of the given function h(x) = 6x^(-4) - 3x^(-6) is h'(x) = -24x^(-5) + 18x^(-7).
To find the derivative of the function h(x) = 6x^(-4) - 3x^(-6). Here's the solution using the given terms:To find the derivative of h(x), we will use the power rule for differentiation. The power rule states that if f(x) = x^n, where n is a constant, then the derivative f'(x) = n * x^(n-1).For more such question on derivative
https://brainly.com/question/31136431
#SPJ11
If other factors are held constant, both the mean and standard deviation for the binomial distribution increase as the sample size increases. True or false?
The sample size increases, but the standard deviation may increase, decrease, or stay the same depending on the probability of success.
False.
The mean (or expected value) of a binomial distribution is given by the formula np, where n is the sample size and p is the probability of success. So as the sample size increases, the mean of the distribution increases proportionally, assuming the probability of success remains constant.
However, the standard deviation of a binomial distribution is given by the formula sqrt(np(1-p)). As the sample size increases, the standard deviation does not necessarily increase. In fact, it can decrease if the probability of success is small or large, and increase if the probability of success is close to 0.5. This is because the variance of the binomial distribution is given by np(1-p), which has a maximum value at p = 0.5. When the probability of success is close to 0 or 1, the variance decreases as the sample size increases because the outcome becomes more predictable. Conversely, when the probability of success is close to 0.5, the variance increases as the sample size increases because there is greater variability in the outcomes.
In summary, the mean of a binomial distribution always increases as the sample size increases, but the standard deviation may increase, decrease, or stay the same depending on the probability of success.
To learn more about proportionally, visit:
https://brainly.com/question/29126727
#SPJ11
In a restaurant, 60% of the items on the menu are main meals and the rest are starters. 50% of the main meals are vegetarian and 20% of the starters are vegetarian. What percentage of the items on the menu are vegetarian?
? QUESTION
The perimeter of the rectangle below is 132 units. Find the length of side VW.
Write your answer without variables.
Y
V
4z + 1
3z + 2
W
The length of side VW is equal to 37 units.
How to calculate the perimeter of a rectangle?In Mathematics and Geometry, the perimeter of a rectangle can be calculated by using this mathematical equation (formula);
P = 2(L + W)
Where:
P represent the perimeter of a rectangle.W represent the width of a rectangle.L represent the length of a rectangle.By substituting the given side lengths into the formula for the perimeter of a rectangle, we have the following;
P = 2(4z + 1 + 3z + 2)
132 = 2(7z + 3)
132 = 14z + 6
z = 126/14
z = 9
VW = 4z + 1 = 4(9) + 1 = 37 units.
Read more on perimeter of a rectangle here: brainly.com/question/28695033
#SPJ1
Suppose we had the following summary statistics from two different, independent populations, both with variances equal to σ.Population 1: ¯x1= 126, s1= 8.062, n1= 5Population 2: ¯x2= 162.75, s2 = 3.5, n2 = 4We want to find a 99% confidence interval for μ2−μ1. To do this, answer the below questions.
The confidence interval of 99% for μ₂ - μ₁ for the given mean and standard deviation is equal to (23.7377, 49.7713).
Confidence interval = 99%
Confidence interval for μ₂ - μ₁, we need to follow these steps,
Calculate the sample mean difference and the standard error of the mean difference.
Sample mean difference
= ¯x₂ - ¯x₁
= 162.75 - 126
= 36.75
Standard error of the mean difference
= √[(s₁^2/n₁) + (s₂^2/n₂)]
= √[(8.062^2/5) + (3.5^2/4)]
= 4.0065 (rounded to four decimal places)
The t-value for a 99% confidence level with degrees of freedom
= n₁ + n₂ - 2
= 5 + 4 - 2
= 7.
Using a t-distribution table attached ,
The t-value for a 99% confidence level with 7 degrees of freedom is 3.250.
Margin of error
= t-value x standard error of the mean difference
= 3.250 x 4.0065
= 13.0213 (rounded to four decimal places)
Confidence interval
= Sample mean difference ± Margin of error
= 36.75 ± 13.0213
= (23.7377, 49.7713)
Therefore, the 99% confidence interval for μ₂ - μ₁ is (23.7377, 49.7713).
learn more about confidence interval here
brainly.com/question/12977720
#SPJ4
my best friend needs help and i don't know how to do this help, please
Six identical chips lettered with A, B, C, D, E, and F are placed in a box. An experiment consists of randomly selecting two chips without replacement. Determine the following and show your work. a) The probability that one chip will be A and one will be E. b) The probability that the first chip will be F. c) The probability that the first chip will be B and the second will be D.
The required answer is the probability of getting the sequence BD is 1/30.
a) To find the probability that one chip will be A and one will be E, we need to first determine the total number of possible outcomes. Since we are selecting two chips without replacement, there are 6 ways to choose the first chip and 5 ways to choose the second chip. Therefore, there are 6 x 5 = 30 possible outcomes.
Next, we need to determine the number of outcomes where one chip is A and one chip is E. There are two ways this can happen: A can be the first chip and E can be the second, or E can be the first chip and A can be the second. Therefore, there are 2 possible outcomes where one chip is A and one chip is E.
The probability of getting one chip that is A and one that is E is therefore 2/30, or 1/15.
b) To find the probability that the first chip will be F, we again need to determine the total number of possible outcomes. Since there are 6 chips, there are 6 ways to choose the first chip.
Out of those 6 possible outcomes, only 1 of them results in the first chip being F. Therefore, the probability of the first chip being F is 1/6.
c) To find the probability that the first chip will be B and the second will be D, we again need to determine the total number of possible outcomes. There are 6 ways to choose the first chip and 5 ways to choose the second chip, giving us 6 x 5 = 30 possible outcomes.
Out of those 30 possible outcomes, only 1 of them results in the first chip being B and the second chip being D (BD).
Therefore, the probability of getting the sequence BD is 1/30.
a) To find the probability that one chip will be A and one will be E, you first need to determine the total number of possible outcomes when selecting two chips without replacement. There are 6 choices for the first chip and 5 choices for the second chip, so there are 6 x 5 = 30 possible outcomes.
Now, there are 2 ways to select chips A and E: AE or EA. So the probability of selecting one A and one E is:
P(A and E) = Number of favorable outcomes (AE or EA) / Total possible outcomes = 2/30 = 1/15
b) To find the probability that the first chip will be F, you need to consider that there are 6 chips in total. Only 1 of them is F, so the probability is:
P(First chip is F) = Number of favorable outcomes (F) / Total possible outcomes = 1/6
c) To find the probability that the first chip will be B and the second chip will be D, you need to consider the possible outcomes. There is only 1 favorable outcome: selecting B first and then D. So the probability is:
P(First chip is B and second chip is D) = Number of favorable outcomes (BD) / Total possible outcomes = 1/30
To know more about The probability. Click on the link.
https://brainly.com/question/29381779
#SPJ11
determine the matrix of the linear transformation t : r 4 → r 3 defined by t(x1, x2, x3, x4) = (2x1 3x2 x4, 5x1 9x3 − x4, 4x1 2x2 − x3 7x4).
The matrix of the linear transformation t : R4 → R3 defined by t(x1, x2, x3, x4) = (2x1 3x2 x4, 5x1 9x3 − x4, 4x1 2x2 − x3 7x4) is:
| 2 0 0 0 |
| 0 0 5 -1 |
| 4 8 -2 7 |
To determine the matrix of the linear transformation t : R4 → R3, we need to find the image of the standard basis vectors under the transformation t. The standard basis vectors of R4 are e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1).
Applying the transformation t to each of these vectors, we get:
t(e1) = (2, 0, 4)
t(e2) = (0, 0, 8)
t(e3) = (0, 5, -2)
t(e4) = (0, -1, 7)
Thus, the matrix of the linear transformation t with respect to the standard bases of R4 and R3 is:
| 2 0 0 0 |
| 0 0 5 -1 |
| 4 8 -2 7 |
Each column of this matrix represents the image of the corresponding basis vector of R4, expressed as a linear combination of the basis vectors of R3.
Note that the matrix has 3 rows and 4 columns, reflecting the fact that the transformation maps R4 to R3.
The first column represents the image of the first basis vector e1, which is (2, 0, 4) in R3.
Similarly, the second, third, and fourth columns represent the images of the basis vectors e2, e3, and e4, respectively.
Therefore, the matrix of the linear transformation t : R4 → R3 defined by t(x1, x2, x3, x4) = (2x1 3x2 x4, 5x1 9x3 − x4, 4x1 2x2 − x3 7x4) is:
| 2 0 0 0 |
| 0 0 5 -1 |
| 4 8 -2 7 |
For more such question on matrix
https://brainly.com/question/2456804
#SPJ11
express the number as a ratio of integers. 0.94 = 0.94949494
We can express the number 0.94 as a ratio of integers by recognizing the repeating pattern in its decimal expansion and converting it to a fraction with a denominator of 100. The resulting fraction is 94/100, which simplifies to 47/50.
To express the number 0.94 as a ratio of integers, we need to find a pattern in its decimal expansion. As we can see, the decimal expansion of 0.94 repeats after the second digit, with the repeating pattern of 94. Therefore, we can write 0.94 as 94/100 or simplified to 47/50.
To understand this concept further, we can think of decimals as a shorthand way of writing fractions. A decimal is just another way to write a fraction with a denominator of 10, 100, 1000, etc. For example, 0.5 is equivalent to 5/10 or simplified to 1/2. In the case of 0.94, we can see that it is equal to 94/100, which can be further simplified to 47/50 by dividing both the numerator and denominator by 2.
The process of converting a decimal to a fraction can be useful in many different areas of math, including algebra, geometry, and calculus. It is important to understand this concept because fractions are an essential part of math and are used in many real-life situations, such as cooking, budgeting, and measurement.
In summary, we can express the number 0.94 as a ratio of integers by recognizing the repeating pattern in its decimal expansion and converting it to a fraction with a denominator of 100. The resulting fraction is 94/100, which simplifies to 47/50.
To know more about number as a ratio of integers refer here:
https://brainly.com/question/31387290
#SPJ11
What is the reverse Polish notation A * B )/( C * D?
The Reverse Polish Notation of the expression A * B )/( C * D is: AB* CD* /
To express the given expression A * B )/( C * D in Reverse Polish Notation (RPN):
You would follow these steps:
STEP 1: Identify the operators and operands in the expression: A * B, /, and C * D
STEP 2: Convert the sub-expressions to RPN:
- A * B becomes AB*
- C * D becomes CD*
STEP 3: Combine the RPN sub-expressions with the remaining operator, /:
- AB* CD* /
So, the Reverse Polish Notation of the expression A * B )/( C * D is: AB* CD* /
To know more Reverse Polish Notation:
https://brainly.com/question/31432103
#SPJ11
Consider a homogeneous linear system that has a 4 by 9 coefficient matrix. The coefficient matrix has rank at most equal to _________ and at least______ free variable columns.
Consider a homogeneous linear system with a 4 by 9 coefficient matrix. The coefficient matrix has rank at most equal to 4 and at least 5 free variable columns.
This is because the rank of a matrix cannot exceed the number of rows or columns it has. In this case, the matrix has 4 rows, so the rank cannot exceed 4.
Additionally, the number of free variable columns can be found by subtracting the rank of the matrix from the number of columns. In this case, there are 9 columns, so subtracting the maximum rank of 4 gives us 5 free variable columns.
Therefore, The coefficient matrix has rank at most equal to 4 and at least 5 free variable columns.
To learn more about linear system here:
brainly.com/question/28977228#
#SPJ11
Determine whether the data set is a population or a sample. Explain your reasoning. The salary of each baseball player in a league. Choose the correct answer below. A. Sample, because it is a collection of salaries for all baseball players in the league, but there are other sports. B. Population, because it is a subset of all athletes. C. Sample, because it is a collection of salaries for some baseball players in the league. D. Population, because it is a collection of salaries for all baseball players in the league.
The data set is a Population, because it is a collection of salaries for all baseball players in the league.Therefore option D is correct.
To determine whether the data set is a population or a sample:
Population, because it is a collection of salaries for all baseball players in the league.
The data set includes every single baseball player's salary in the league, which makes it a population.
It is not a sample because it includes every individual in the group being studied, rather than just a subset of them.
To know more about Data set:
https://brainly.com/question/22210584
#SPJ11
Answer this math question for ten points lol
Answer:
C
Step-by-step explanation:
Sin is opposite divided by hypotenuse, so that would be 21 divided by 35.
Solve the linear inequality. Express the solution using interval notation.2 − 4x > 6Graph the solution set.
The solution set for the inequality 2 - 4x > 6 is x < -1, expressed in interval notation as (-∞, -1).
How to solve the inequality?To solve the inequality 2 - 4x > 6, we need to isolate the variable x on one side of the inequality.
2 - 4x > 6
Subtract 2 from both sides:
-4x > 4
Divide both sides by -4, remembering to flip the inequality since we are dividing by a negative number:
x < -1
Therefore, the solution set for the inequality 2 - 4x > 6 is x < -1, expressed in interval notation as (-∞, -1).
To graph this solution set, we can draw a number line and shade everything to the left of -1.
<=================|----------->
-1
The shaded part of the number line represents the solution set (-∞, -1).
Learn more about linear inequality
brainly.com/question/11897796
#SPJ11
Choose the best description and example of the null hypothesis in a hypothesis test.A statistical hypothesis that there is no difference between a parameter and a specific value, or between two Oparameters. Example: H, -67A statistical hypothesis that there is a difference between a parameter and a specific value, or between two parameters. Example: Hou#90A statistical hypothesis that there is no difference between a parameter and a specific value, or between two parameters. Example: Hou - 90A statistical hypothesis that there is no difference between a parameter and zero, or that the difference between two parameters is zero. Example: How=0
The best descriptiοn and example οf the null hypοthesis in a hypοthesis test is: "A statistical hypοthesis that there is nο difference between a parameter and a specific value, οr between twο parameters. Example: Hοu - 90"
What is the Null hypοthesis?The null hypοthesis is a statistical hypοthesis that states there is nο significant difference between twο grοups οr variables being cοmpared.
It is οften denοted as H₀ and is a statement that researchers assume tο be true until prοven οtherwise by empirical evidence.
Frοm the given οptiοns
The best descriptiοn and example οf the null hypοthesis in a hypοthesis test is: "A statistical hypοthesis that there is nο difference between a parameter and a specific value, οr between twο parameters. Example: Hοu - 90"
In a hypοthesis test, the null hypοthesis represents the default assumptiοn that there is nο significant difference between twο grοups, οr between a sample and a pοpulatiοn.
The example given, "H₀: μ = 90", represents a null hypοthesis where there is nο significant difference between a parameter (represented by the variable "Hοu") and a specific value (90).
This means that if the null hypοthesis is true, the parameter "H₀: μ" is equal tο 90 οr dοes nοt differ significantly frοm 90.
Hence,
The best descriptiοn and example οf the null hypοthesis in a hypοthesis test is: "A statistical hypοthesis that there is nο difference between a parameter and a specific value, οr between twο parameters. Example: Hοu - 90"
Learn more about Null hypothesis at
https://brainly.com/question/28920252
#SPJ1
Let r(t) = ti+t^2j + 2tk The tangential component of acceleration is a. aT = 2/√t^2+5 b. aT = 4/√t^2+5 c. aT = 4t/√4t^2+5 d. aT = 2t/√4t^2+5 e. aT=t/√4t^2 +5
The tangential component of acceleration is c. aT = 4t/√4t²+5.
We need to follow these steps:
1. Calculate the first derivative of r(t) to get the velocity vector v(t).
2. Calculate the second derivative of r(t) to get the acceleration vector a(t).
3. Calculate the magnitude of the velocity vector |v(t)|.
4. Calculate the tangential component of acceleration aT by finding the dot product of a(t) and v(t), and then dividing by the magnitude of the velocity vector |v(t)|.
Let's go through these steps:
1. r(t) = ti + t²j + 2tk
v(t) = dr(t)/dt = (1)i + (2t)j + (2)k
2. a(t) = dv(t)/dt = (0)i + (2)j + (0)k
3. |v(t)| = √(1² + (2t)² + 2²) = √(1 + 4t² + 4) = √(4t² + 5)
4. aT = (a(t) • v(t)) / |v(t)| = ((0)(1) + (2)(2t) + (0)(2)) / √(4t² + 5) = (4t) / √(4t² + 5)
So, the tangential component of acceleration is:
aT = 4t / √(4t² + 5)
This corresponds to option c. aT = 4t/√4t²+5.
Learn more about tangential component.
brainly.com/question/30029917
#SPJ11
18. A (xE Z: x is a prime number) B (4, 7, 9, 11, 13, 14) Select the set corresponding to (AUB)nc. a. 13, 5, 7) b. (3, 4, 7, 9) c. (3, 4, 5, 7, 9) d. 13, 4, 5, 7, 9, 11, 13)
The Set corresponding to (AUB)nc is Option C. (3, 4, 5, 7, 9).
(AUB)nc represents the complement of the union of sets A and B. To find this set, we first need to find the union of sets A and B, which is the set of all elements that are in either A or B or both.
Set A contains all prime numbers, so A = (2, 3, 5, 7, 11, ...). Set B contains (4, 7, 9, 11, 13, 14). Taking the union of sets A and B gives us:
AUB = (2, 3, 4, 5, 7, 9, 11, 13, 14)
The complement of this set (denoted by nc) contains all elements that are not in this set. Therefore, (AUB)nc contains all elements that are not in the union of sets A and B.
Option A contains 13, which is in AUB. Option B contains 4 and 7, which are also in AUB. Option D contains all elements in AUB. Therefore, the correct answer is option C, which contains (3, 4, 5, 7, 9) and does not contain any elements that are in A or B.
To learn more about the union of sets, visit:
https://brainly.com/question/29870206
#SPJ11
determine whether the integral is convergent or divergent. 3 30 x2 − 7x 10 dx 0
To determine if the integral is convergent or divergent, we need to evaluate the given integral. Integers are a type of number in mathematics that include both positive and negative whole numbers, as well as zero.
Here's the integral you provided:
∫(from 0 to 3) [(30x^2 - 7x)/10] dx
First, let's simplify the integer and by dividing each term by 10:
∫(from 0 to 3) [3x^2 - (7/10)x] dx
Now, we need to find the antiderivative of the simplified integrand:
Antiderivative of 3x^2 is x^3, and the antiderivative of (7/10)x is (7/20)x^2.
So, the antiderivative of the integrand is:
x^3 - (7/20)x^2
Next, we'll evaluate the antiderivative at the limits of integration (0 and 3):
(x^3 - (7/20)x^2) | (from 0 to 3)
= (3^3 - (7/20)(3^2)) - (0^3 - (7/20)(0^2))
= (27 - (7/20)(9)) - (0 - 0)
= 27 - (63/20)
Now, since we got a finite value for the integral, we can conclude that the integral is convergent.
To learn more about “integral” refer to the https://brainly.com/question/30094386
#SPJ11
dx1 /dt = 2x1 + x2 dx2/ dt = x1 + 2x2
Rewrite the above differential equations in a matrix-vector form as below.
The given differential equations can be rewritten in matrix-vector form as dX/dt = AX, where X = [x₁, x₂]ᵀ and A = [[2, 1], [1, 2]].
To rewrite the given differential equations in matrix-vector form, follow these steps:
1. Identify the dependent variables, x₁ and x₂, and arrange them into a column vector, X. This gives X = [x₁, x₂]ᵀ.
2. Identify the coefficients of x₁ and x₂ in the given differential equations. For dx₁/dt = 2x₁ + x₂ and dx₂/dt = x₁ + 2x₂, these coefficients are 2, 1, 1, and 2.
3. Arrange the coefficients into a matrix A, with rows corresponding to the order of the dependent variables. This gives A = [[2, 1], [1, 2]].
4. Write the matrix-vector equation dX/dt = AX. This represents the original system of differential equations in matrix-vector form.
To know more about differential equations click on below link:
https://brainly.com/question/14620493#
#SPJ11
help!
write an equation in point slope form
The linear equation in point-slope form is:
y + 6 = (3/4)*(x + 4)
How to write the equation for the line?For a linear equation whose slope is m, and we know that it passes through a point (x₁, y₁), the point slope form can be written as follows:
y - y₁ = m*(x - x₁)
Here we know that the slope of the linear equations is (3/4) and the point is (-4, -6)
Then the linear equation in the point slope form can be written as:
y + 6 = (3/4)*(x + 4)
Learn more about lines at:
https://brainly.com/question/1884491
#SPJ1
This answer doesn’t work. Help!
Answer:
2.80
Step-by-step explanation:
35p = £0.35
8 × £0.35 = £2.80
i dont understand this pls help asap
Answer:
perimeter: 16 +4/3π ≈ 20.19 unitsarea: 16 +8/3π ≈ 24.38 units²Step-by-step explanation:
You are asked for the area and perimeter of a figure comprised of a square and two sectors.
PerimeterStraight edgesThe perimeter of the figure is the sum of the lengths of the outside edges. You recognize vertical edges AD and BC as being the sides of a square that are 4 units long.
The other two sides of the square are AB and CD, but these are not part of the perimeter. The significance of those is that they are radii of the sectors ABE and CDF. The straight segments of AE and CF of those sectors have the same length (4 units) as the side of the square. Those straight segments are part of the perimeter.
In effect, the four straight segments of the perimeter are all 4 units.
Curved edgesThe curved edges of the two sectors have a length that is found using the formula ...
s = rθ
where r is the sector radius, and θ is the central angle in radians.
The angle is shown as 30°, which is 30°(π/180°) = π/6 radians. The radius is the square side length, 4, so each curved line has length ...
s = (4)(π/6) = 2/3·π
Full perimeterThe perimeter of the figure is the sum of the lengths of the straight segments and the curved arcs:
P = 4(4 units) +2(2/3π units) = 16 +4/3π units ≈ 20.19 units
AreaAs with the perimeter, the area is composed of the area of a square and the areas of two sectors.
Square areaThe area of the square is the square of its side length:
A = s²
A = (4 units)² = 16 units²
Sector areaThe area of each sector is effectively the area of a triangle with base equal to the arc length (2/3π) and height equal to the radius of the arc (4 units). The sector area is ...
A = 1/2rs
A = 1/2(4 units)(2/3π units) = 4/3π units²
Total areaThe area of the whole figure is the sum of the area of the square and the areas of the two sectors:
A = square area + 2×(sector area)
A = 16 units² + 2×(4/3π units²) = (16 +8/3π) units² ≈ 24.38 units²
__
Additional comment
In general, you find the perimeter and/or area of a strange figure by decomposing it into parts whose perimeter and area you can compute. (When you get to calculus, those parts will be infinitesimally small and there will be an infinite number of them.) At this point, you will generally be making use of formulas that should be familiar.
The formula for the area of a sector is usually written ...
A = 1/2r²θ
Here, we have made use of our previous computation of s=rθ to write the area formula as A = 1/2rs. The similarity to the triangle area formula is not accidental.