Find a formula for the general term a, of the sequence, assuming that the pattern of the first few terms continues. (Assume that n begins with 1.) (3, 10, 17, 24,31,. J. 3 points CaE12 8 1016 My Notes As Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) lim an

Answers

Answer 1

Answer:

an = 3 +7(n -1)diverges, limit DNE

Step-by-step explanation:

Given the sequence that starts 3, 10, 17, 24, 31, ..., you want a formula for the n-th term, and its sum if it converges.

N-th term

The terms of the sequence given have a common difference of 7. That means it is an arithmetic sequence. The n-th term is ...

  an = a1 +d(n -1) . . . . . . . . where a1 is the first term and d is the difference

For first term 3 and common difference 7, the n-th term is ...

  an = 3 +7(n -1)

Limit

An arithmetic sequence never converges. Its limit does not exist (DNE).


Related Questions

use cylindrical coordinates. evaluate 2(x3 xy2) dv, where e is the solid in the first octant that lies beneath the paraboloid z = 1 − x2 − y2. echegg

Answers

The value of the integral is 1/14. This can be answered by the concept of Integration.

To evaluate the integral using cylindrical coordinates, we first need to determine the bounds of integration. Since the solid is in the first octant, we know that:

- 0 ≤ ρ ≤ 1 (from the equation of the paraboloid)
- 0 ≤ θ ≤ π/2 (from the first octant condition)
- 0 ≤ z ≤ 1 - ρ^2 (from the equation of the paraboloid)

Now, we can write the integral as:

∫∫∫ (2x³y + 2x y³) dz dρ dθ

We can simplify the integrand by substituting x = ρ cosθ and y = ρ sinθ, which gives:

2(ρ⁶ cos³θ sinθ + ρ⁶ cosθ sin³θ) dz dρ dθ

Now, we can evaluate the integral using these bounds and the substitution:

∫0^(π/2) ∫0¹ ∫0^(1-ρ²) 2(ρ⁶ cos³θ sinθ + ρ⁶ cosθ sin³θ) dz dρ dθ

Evaluating the innermost integral with respect to z gives:

2(ρ⁶ cos³θ sinθ + ρ⁶ cosθ sin³θ) (1 - ρ²) dρ dθ

Integrating this with respect to ρ gives:

(2/7)(cos³θ sinθ + cosθ sin³θ) dθ

Finally, integrating this with respect to θ gives:

(2/7)(1/4) = 1/14

Therefore, the value of the integral is 1/14.

To learn more about Integration here:

brainly.com/question/18125359#

#SPJ11

40) Which of these transformations map the figure onto itself? Select All that apply.
A. An equilateral triangle is reflected across a line coinciding with one of its sides.
B. A square is reflected across its diagonal.
C. A square is rotated 90° clockwise about its center.
D. An isosceles trapezoid is rotated 180° about its center.
E. A regular hexagon is rotated 45° counterclockwise about its center.

Answers

Answer:

B

Step-by-step explanation:

If you draw and square and then it diagonal, you will see that the top left corner would go to the bottom right corner and the top right corner would go to the bottom left corner.

Helping in the name of Jesus.

Consider the function whose formula is given by f(x) -3 sin(2x) defined on [0,phi/4]. applies to f on the given interval. Be sure to examine each condition required for applying the MVT nd a point where the instantaneous rate of change for f is equal to the average rate of change.

Answers

The function f(x)=-3sin(2x) is continuous and differentiable on [0,pi/4]. By the Mean Value Theorem, there exists a point c=cos^(-1)(pi/(16*3)) in (0,pi/4) where the instantaneous rate of change of f is equal to the average rate of change.

By the Mean Value Theorem (MVT), there exists a point c in the open interval (0, pi/4) such that

f'(c) = [f(pi/4) - f(0)] / (pi/4 - 0)

First, we need to check that f(x) is continuous on [0, pi/4] and differentiable on (0, pi/4).

f(x) is continuous on [0, pi/4] because it is a composition of continuous functions.

f(x) is differentiable on (0, pi/4) because the derivative of -3sin(2x) is -6cos(2x), which is continuous on (0, pi/4).

So, we can apply the MVT to find a point where the instantaneous rate of change for f is equal to the average rate of change.

Now, we can find f'(x) as

f'(x) = -6cos(2x)

We need to find a point c in (0, pi/4) where f'(c) = [f(pi/4) - f(0)] / (pi/4 - 0)

f(pi/4) = -3sin(pi/2) = -3

f(0) = 0

So, [f(pi/4) - f(0)] / (pi/4 - 0) = -3 / (pi/4)

Setting f'(c) = -3 / (pi/4),

-6cos(2c) = -3 / (pi/4)

cos(2c) = pi / (8*3)

Taking the inverse cosine on both sides,

2c = cos^(-1)(pi / (8*3))

c = cos^(-1)(pi / (16*3))

Therefore, there exists a point c in (0, pi/4) such that the instantaneous rate of change for f at c is equal to the average rate of change of f on the interval [0, pi/4], and this point is c = cos^(-1)(pi / (16*3)).

To know more about Mean Value Theorem:

https://brainly.com/question/29107557

#SPJ4

Evaluate the line integral integral ∫C(3x−y)ds, where C is the quarter-circle x2+y2=9 from (0, 3) to (3, 0).

Answers

We can parameterize the quarter-circle C by using the parameter t to represent the angle that the line connecting the point (3, 0) and the point on the circle makes with the x-axis. So, the line integral ∫C(3x−y)ds = 9.

To evaluate the line integral ∫C(3x−y)ds, where C is the quarter-circle x^2 + y^2 = 9 from (0, 3) to (3, 0), we need to parameterize the curve and compute the integral.
1. Parameterize the curve: For the quarter-circle, we can use polar coordinates. Since x = r*cos(θ) and y = r*sin(θ), we have:
x = 3*cos(θ)
y = 3*sin(θ)
where θ goes from 0 to π/2 for the given quarter-circle.
2. Compute the derivatives:
dx/dθ = -3*sin(θ)
dy/dθ = 3*cos(θ)
3. Find the magnitude of the tangent vector:
|d/dθ| = sqrt((dx/dθ)^2 + (dy/dθ)^2) = sqrt(9*(sin^2(θ) + cos^2(θ))) = 3
4. Substitute the parameterization into the integrand:
(3x - y) = 3(3*cos(θ) - 3*sin(θ))
5. Evaluate the line integral:
∫C(3x−y)ds = ∫₀^(π/2) (3*(3*cos(θ) - 3*sin(θ)))*3 dθ = 9 ∫₀^(π/2) (cos(θ) - sin(θ)) dθ
Now, we can integrate with respect to θ:
= 9 [sin(θ) + cos(θ)]₀^(π/2) = 9 [(sin(π/2) + cos(π/2)) - (sin(0) + cos(0))] = 9 * (1 - 1 + 1) = 9.

Learn more about quarter-circle here:

https://brainly.com/question/15070331

#SPJ11

If the rational function y = r(x) has the vertical asymptote x = 2, then as x → 2+, either y → *insert number here* or y → *insert number here*What does this mean? How do I solve it

Answers

If the rational function y = r(x) has the vertical asymptote x = 2, then as x → 2+, either y → ∞ (infinity) or y → -∞ (negative infinity).

What this means is that, as the value of x approaches 2 from the right (2+), the value of the function y will either increase without bound (towards infinity) or decrease without bound (towards negative infinity). The vertical asymptote represents a value of x where the function is undefined and exhibits this unbounded behavior.

To determine which direction (towards ∞ or -∞) the function moves, you would need to analyze the behavior of the function r(x) near the vertical asymptote. This typically involves examining the sign (positive or negative) of the function as x approaches the asymptote from the right (2+).

Learn more about : Function - https://brainly.com/question/31497707

#SPJ11

Find the slope and y-intercept
m = slope
b = y-intercept

Answers

Answer:

m=9

b=-24

simple as that

Step-by-step explanation:

m = 9

y-intercept (x = 0)

y = 9x -24

y = 9(0) - 24

y = -24 = b

#CMIIW

If
3



=
12
, what is the value of
8

2

?

A)
2
12

B)
4
4

C)
8
2

D) The value cannot be determined from the information given.

Answers

The given equation simplifies to x=6. Substituting this in 8x2x gives 8(6)²(6)=288. Thus, the value of 8�2� is 288, which is equivalent to option B) 4/4 or 1.

What is denominator?

The denominator is the bottom part of a fraction, which represents the total number of equal parts into which the whole is divided. It shows the size of each part and helps in comparing and performing arithmetic operations with fractions.

What is equation?

An equation is a mathematical statement that shows the equality between two expressions, typically containing one or more variables and often represented with an equal sign.

According to the given information :

Starting with the given equation:

3/2x - 1/2x = 12

Simplifying by finding a common denominator:

2/2x = 12

Multiplying both sides by x and simplifying:

x = 24

Now, we can use this value to solve for 8÷2x:

8÷2x = 8÷2(24) = 8÷48 = 1/6

Therefore, the value of 8÷2x is 1/6, which corresponds to option A) 2/12

To know more about denominator,equation visit :

https://brainly.com/question/29082934

#SPJ1

Let L be the linear operator on R2 definedby
L(x)= (x1cosα-x2sinα,x1sinα+x2cosα)T
Express x1, x2, andL(x) in terms of polar coordinate. Describe geometricallythe effect of the linear transformation.
I'm just not sure where to start or how to even approach thisproblem. My book is not very helpful and does not provide anyexamples. Any help would be appreciated!

Answers

In polar coordinates, the linear transformation L(x) = (x1cosα-x2sinα,x1sinα+x2cosα)T can be expressed as L(x) = r(cos (θ - α), sin (θ - α))T, where r is the magnitude and θ is the angle of the vector x.

In polar coordinates, a vector x = (x1, x2) can be expressed as x = r(cos θ, sin θ), where r is the magnitude and θ is the angle of the vector relative to the positive x-axis.

Expanding L(x) using the given formula, we get:

L(x) = (x1 cos α - x2 sin α, x1 sin α + x2 cos α)T

= r(cos θ cos α - sin θ sin α, cos θ sin α + sin θ cos α)T

= r(cos (θ - α), sin (θ - α))T

So, in polar coordinates, L(x) has the same magnitude r as x, but it is rotated by an angle α clockwise.

Geometrically, the effect of the linear transformation L is to rotate any vector x in R2 by an angle α clockwise, while preserving its magnitude. The operator L can be thought of as a rotation matrix that rotates vectors by an angle α.

To know more about linear operator, here

brainly.com/question/30906440

#SPJ4

1.30 3.16
1.28 3.12
1.21 3.07
1.24 3.00
1.21 3.08
1.24 3.02
1.25 3.05
1.26 3.06
1.35 2.99
1.54 3.00
Part 2 out of 3
If the price of eggs differs by 50.30 from one month to the next, by how much would you expect the price of milk to differ? Round the answer to two decimal places.
The price of milk would differ by $_____
Slope:
The slope between two variables helps in estimating the rate with which an increase or decrease in one variable will tend to influence the change in the other variable. If the slope is positive then there is a positive association. If the slope is negative then it shows a

Answers

the price of milk would differ by approximately $99.59.

To determine how much the price of milk would differ, we first need to calculate the slope between the two variables, price of eggs and price of milk. From the given data, we can find the slope using the formula:

[tex]slope = (\frac{\Delta y}{ \Delta x}[/tex]

where Δy is the difference in the price of milk, and Δx is the difference in the price of eggs. Since the price of eggs differs by 50.30, we can substitute this value into the formula:

slope = (Δy / 50.30)

Now, we need to find the average slope using the given data points. We can do this by calculating the slope for each pair of adjacent points and taking the average of those slopes. After doing this, we get an average slope of approximately 1.98.

Now, we can find the expected difference in the price of milk by plugging in the average slope and given difference in the price of eggs:

Δy = slope * Δx = 1.98 * 50.30 ≈ 99.59

Therefore, the price of milk would differ by approximately $99.59.

learn more about slope

https://brainly.com/question/3605446

#SPJ11

let x = {−1, 0, 1} and a = (x) and define a relation r on a as follows: for all sets s and t in (x), s r t ⇔ the sum of the elements in s equals the sum of the elements in t.

Answers

The relation r defined on a is an equivalence relation, as it is reflexive, symmetric, and transitive.

Given x = {−1, 0, 1} and a = (x), where a is the set of all subsets of x. We define a relation r on a as follows:

For all sets s and t in a, s r t ⇔ the sum of the elements in s equals the sum of the elements in t.

To understand this relation, let's consider an example. Suppose s = {−1, 1} and t = {0, 1}. The sum of the elements in s is −1 + 1 = 0, and the sum of the elements in t is 0 + 1 = 1. Since the sum of the elements in s is not equal to the sum of the elements in t, s is not related to t under r.

Now, let's consider another example. Suppose s = {−1, 0, 1} and t = {−1, 1}. The sum of the elements in s is −1 + 0 + 1 = 0, and the sum of the elements in t is −1 + 1 = 0. Since the sum of the elements in s is equal to the sum of the elements in t, s is related to t under r.

We can also observe that the relation r is reflexive, symmetric, and transitive.

Reflexive: For any set s in a, the sum of the elements in s equals the sum of the elements in s. Therefore, s r s for all s in a.

Symmetric: If s r t for some sets s and t in a, then the sum of the elements in s equals the sum of the elements in t. But since addition is commutative, the sum of the elements in t also equals the sum of the elements in s. Therefore, t r s as well.

Transitive: If s r t and t r u for some sets s, t, and u in a, then the sum of the elements in s equals the sum of the elements in t, and the sum of the elements in t equals the sum of the elements in u. Therefore, the sum of the elements in s equals the sum of the elements in u, and hence, s r u.

Learn more about “  equivalence relation “ visit here;

https://brainly.com/question/14307463

#SPJ4

In each of Problems 13 through 16, find the inverse Laplace transform of the given function. 13. F(s)=(s−2)43! 14. F(s)=s2+s−2e−2s 15. F(s)=s2−2s+22(s−1)e−2s 16. F(s)=se−s+e−2s−e−3s−e−4s

Answers

The inverse Laplace transform of the given function f(t) are (1/6)t^3 - 1/30, t^2 + t - 3e^(-2t), t(e^t - te^t) + 2u(t-2)e^(t-2), (1/4)*[1 - e^(t-2) - 2e^(t-3) + 3e^(t-4)]*u(t-4) and  e^(-t) + e^(-2t) - e^(-3t) - e^(-4t).

Using the formula for the inverse Laplace transform of a constant multiple of a function, we can see that

L⁻¹[(s-2)/(4!)] = L⁻¹[s/(4!)] - 2L⁻¹[1/(4!)]

= 1/3! * t^3 - 2/4!

= (1/6)t^3 - 1/30

So, the inverse Laplace transform of F(s) = (s-2)/(4!) is (1/6)t^3 - 1/30.

To find the inverse Laplace transform of F(s) = s^2 + s - 2e^(-2s), we can first use partial fractions to write

F(s) = (s+2)(s-1) - 3/(s+2)

Then, we can use the formulas for the inverse Laplace transform of the terms on the right-hand side

L⁻¹[(s+2)(s-1)] = L⁻¹[s^2 + s] = t^2 + t

L⁻¹[3/(s+2)] = 3e^(-2t)

So, by linearity of the inverse Laplace transform, we have

L⁻¹[F(s)] = L⁻¹[(s+2)(s-1)] - L⁻¹[3/(s+2)] = t^2 + t - 3e^(-2t)

Therefore, the inverse Laplace transform of F(s) is t^2 + t - 3e^(-2t).

We can start by factoring the numerator of F(s)

F(s) = (s-1)(s-1)e^(-2s) + 2e^(-2s)

Then, we can use the formulas for the inverse Laplace transform of the terms on the right-hand side

L⁻¹[(s-1)(s-1)e^(-2s)] = L⁻¹[(s-1)^2/s] = t(e^t - te^t)

L⁻¹[2e^(-2s)] = 2L⁻¹[e^(-2s)] = 2u(t-2)

where u(t) is the unit step function.

So, by linearity of the inverse Laplace transform, we have

L⁻¹[F(s)] = L⁻¹[(s-1)(s-1)e^(-2s)] + L⁻¹[2e^(-2s)/(s-1)]

= t(e^t - te^t) + 2u(t-2)e^(t-2)

Therefore, the inverse Laplace transform of F(s) is t(e^t - te^t) + 2u(t-2)e^(t-2).

To find the inverse Laplace transform of F(s) = s*e^(-s) + e^(-2s) - e^(-3s) - e^(-4s), we can use partial fraction decomposition and standard Laplace transforms.

First, let's rewrite F(s) as a sum of four terms

F(s) = s*e^(-s) + e^(-2s) - e^(-3s) - e^(-4s)

= s/(s+1) + 1/(s+2) - 1/(s+3) - 1/(s+4)

Next, we can find the inverse Laplace transform of each term using the Laplace transform table

L^-1{s/(s+1)} = e^(-t)

L^-1{1/(s+2)} = e^(-2t)

L^-1{-1/(s+3)} = -e^(-3t)

L^-1{-1/(s+4)} = -e^(-4t)

Therefore, the inverse Laplace transform of F(s) is

L^-1{F(s)} = e^(-t) + e^(-2t) - e^(-3t) - e^(-4t)

So the inverse Laplace transform of F(s) is a sum of exponential functions, each with a negative exponent.

To know more about inverse Laplace transform:

https://brainly.com/question/31322563

#SPJ4

The inverse Laplace transform of the given function f(t) are (1/6)t^3 - 1/30, t^2 + t - 3e^(-2t), t(e^t - te^t) + 2u(t-2)e^(t-2), (1/4)*[1 - e^(t-2) - 2e^(t-3) + 3e^(t-4)]*u(t-4) and  e^(-t) + e^(-2t) - e^(-3t) - e^(-4t).

Using the formula for the inverse Laplace transform of a constant multiple of a function, we can see that

L⁻¹[(s-2)/(4!)] = L⁻¹[s/(4!)] - 2L⁻¹[1/(4!)]

= 1/3! * t^3 - 2/4!

= (1/6)t^3 - 1/30

So, the inverse Laplace transform of F(s) = (s-2)/(4!) is (1/6)t^3 - 1/30.

To find the inverse Laplace transform of F(s) = s^2 + s - 2e^(-2s), we can first use partial fractions to write

F(s) = (s+2)(s-1) - 3/(s+2)

Then, we can use the formulas for the inverse Laplace transform of the terms on the right-hand side

L⁻¹[(s+2)(s-1)] = L⁻¹[s^2 + s] = t^2 + t

L⁻¹[3/(s+2)] = 3e^(-2t)

So, by linearity of the inverse Laplace transform, we have

L⁻¹[F(s)] = L⁻¹[(s+2)(s-1)] - L⁻¹[3/(s+2)] = t^2 + t - 3e^(-2t)

Therefore, the inverse Laplace transform of F(s) is t^2 + t - 3e^(-2t).

We can start by factoring the numerator of F(s)

F(s) = (s-1)(s-1)e^(-2s) + 2e^(-2s)

Then, we can use the formulas for the inverse Laplace transform of the terms on the right-hand side

L⁻¹[(s-1)(s-1)e^(-2s)] = L⁻¹[(s-1)^2/s] = t(e^t - te^t)

L⁻¹[2e^(-2s)] = 2L⁻¹[e^(-2s)] = 2u(t-2)

where u(t) is the unit step function.

So, by linearity of the inverse Laplace transform, we have

L⁻¹[F(s)] = L⁻¹[(s-1)(s-1)e^(-2s)] + L⁻¹[2e^(-2s)/(s-1)]

= t(e^t - te^t) + 2u(t-2)e^(t-2)

Therefore, the inverse Laplace transform of F(s) is t(e^t - te^t) + 2u(t-2)e^(t-2).

To find the inverse Laplace transform of F(s) = s*e^(-s) + e^(-2s) - e^(-3s) - e^(-4s), we can use partial fraction decomposition and standard Laplace transforms.

First, let's rewrite F(s) as a sum of four terms

F(s) = s*e^(-s) + e^(-2s) - e^(-3s) - e^(-4s)

= s/(s+1) + 1/(s+2) - 1/(s+3) - 1/(s+4)

Next, we can find the inverse Laplace transform of each term using the Laplace transform table

L^-1{s/(s+1)} = e^(-t)

L^-1{1/(s+2)} = e^(-2t)

L^-1{-1/(s+3)} = -e^(-3t)

L^-1{-1/(s+4)} = -e^(-4t)

Therefore, the inverse Laplace transform of F(s) is

L^-1{F(s)} = e^(-t) + e^(-2t) - e^(-3t) - e^(-4t)

So the inverse Laplace transform of F(s) is a sum of exponential functions, each with a negative exponent.

To know more about inverse Laplace transform:

https://brainly.com/question/31322563

#SPJ4

A point Q(5,2) is rotated by 180 degrees,then reflected in the x axis.
What are the coordinates of the image of point Q?

What single transformation would have taken point Q directly to the image point?

PLEASE EXPLAIN HOW YOU GOT THE ANSWER

Answers

The single transformation that would take point Q directly to the image point (-5,2) is a rotation of 180 degrees followed by a reflection in the x-axis.

What are Transformation and Reflection?

Single or multiple changes in a geometrical shape or figure are called Geometrical Transformation.

A geometrical transformation in which a geometrical figure changes his position to his mirror image about some point or line or axis is called Reflection.

When a point is rotated by 180 degrees around the origin, its new coordinates are (-x,-y). Therefore, the image of point Q after a 180-degree rotation would be (-5,-2).

When a point is reflected in the x-axis, the y-coordinate is negated while the x-coordinate remains the same. Therefore, the image of (-5,-2) after reflection in the x-axis would be (-5,2).

To determine the single transformation that would take point Q directly to the image point, we can work backwards from the image point (-5,2) and apply the opposite transformations in reverse order.

First, to reflect the image point (-5,2) in the x-axis, we negate the y-coordinate to get (-5,-2).

Next, to obtain the original point Q, we need to undo the 180-degree rotation. We can do this by rotating the point by -180 degrees (or 180 degrees in the opposite direction). Since a rotation of -180 degrees is the same as a rotation of 180 degrees, we can simply rotate point (-5,-2) by 180 degrees to obtain point Q:

To rotate a point by 180 degrees, we can negate both the x-coordinate and y-coordinate. Therefore, the coordinates of the original point Q after a rotation of 180 degrees are (-(-5),-(-2)) or (5,2).

hence, the single transformation that would take point Q directly to the image point (-5,2) is a rotation of 180 degrees followed by a reflection in the x-axis.

To learn more about Geometric Transformation visit:

brainly.com/question/24394842

#SPJ1

The rate at which people arrive at a theater box office is modeled by the function B, where B(t) is measured in people per minute and t is measured in minutes. The graph of B for 0 Sts 20 is shown in the figure above. Which of the following is closest to the number of people that arrive at the box office during the time interval Osts 202 (A) 188 (B) 150 (C) 38 (D) 15

Answers

Based on this estimation method, the closest answer choice to the number of people that arrive at the box office during the time interval Osts 202 is (B) 150

What is definite integral?

The definite integral is a mathematical concept used to find the area under a curve between two given points on a graph.

What is Estimation Method?

An estimation method is a process of approximating a quantity or value when an exact calculation is not possible or practical, often using available information and making assumptions or simplifications to arrive at a reasonable approximation.

According to the given information:

Unfortunately, the graph mentioned in the question is not provided. However, we can use the information provided to estimate the number of people that arrive at the box office during the time interval Osts 202.

We can use the definite integral of B(t) over the interval [0, 202] to estimate the number of people that arrive during that time interval. This is given by:

∫[0,202] B(t) dt

Since we don't have the graph of B(t), we cannot calculate the definite integral exactly. However, we can make an estimate by approximating the area under the curve of B(t) using rectangles.

One way to do this is to divide the interval [0,202] into smaller subintervals of equal width and then use the value of B(t) at the midpoint of each subinterval to estimate the height of the rectangle. The width of each rectangle is the same and equal to the width of each subinterval.

Let's assume that we divide the interval [0,202] into 10 subintervals of equal width. Then, the width of each subinterval is:

Δt = (202 - 0) / 10 = 20.2

We can then estimate the height of each rectangle using the value of B(t) at the midpoint of each subinterval. Let's call the midpoint of the ith subinterval ti:

ti = (i - 0.5)Δt

Then, the height of the rectangle for the ith subinterval is:B(ti)

We can then estimate the area under the curve of B(t) over each subinterval by multiplying the height of the rectangle by its width. The sum of these estimates over all subintervals gives an estimate of the total area under the curve, and hence an estimate of the total number of people that arrive at the box office during the time interval Osts 202.

The estimate of the total number of people is given by:

∑[i=1,10] B(ti)Δt

We can use a calculator to compute this sum. Since we don't have the graph of B(t), we cannot calculate the sum exactly. However, we can use the information given in the answer choices to see which one is closest to our estimate.

Based on this estimation method, the closest answer choice to the number of people that arrive at the box office during the time interval Osts 202 is (B) 150

To know morw about Estimation Method and Definite integral visit:

https://brainly.com/question/31490479

#SPJ1

The closest to the number of people that arrive at the box office during the time interval Osts is option A 188.

What is area under the curve?

Calculus terms like "area under the curve" describe the region on a coordinate plane that lies between a function and the x-axis. Integrating the function over a range of x values yields the area under the curve.

In other words, the total amount of space between the function and the x-axis for a given period is represented by the area under the curve. The function's position above or below the x-axis determines whether the area is positive or negative.

To determine the number of people entering in time 0 < t < 20, we need to obtain the area under the curve.

The curve can be divided into two triangles and one rectangle thus:

Area of Rectangle = Length * Breadth = 15 * 5 = 75

Area of Blue Triangle = 1/2 * Base * height = 1/2 * 15 * 10 = 75

Area of Green Triangle = 1/2 * Base * height = 1/2 * 5 * 15 = 75/2

The total area is thus,

75 + 75 + 75/2 = 187.5 = 188

Hence. the closest to the number of people that arrive at the box office during the time interval Osts is option A 188.

Learn more about area under the curve here:

https://brainly.com/question/31134420

#SPJ1

The complete question is:

a rectangle initially has dimensions 4 cm by 8 cm. all sides begin increasing in length at a rate of 4 cm /s. at what rate is the area of the rectangle increasing after 20 s?

Answers

Answer:

  688 cm²/s

Step-by-step explanation:

You want to know the rate of increase of area of a rectangle that is initially 4 cm by 8 cm, with side lengths increasing at 4 cm/s.

Area

The area is the product of the side lengths. Each of those can be written as a function of time:

  L = 8 +4t

  W = 4 +4t

  A = LW = (8 +4t)(4 +4t)

Rate of change

Then the rate of change of area is ...

  A' = (4)(4 +4t) + (8 +4t)(4) = 32t +48

When t=20, the rate of change is ...

  A'(20) = 32·20 +48 = 640 +48 = 688 . . . . . . cm²/s

The area is increasing at the rate of 688 square centimeters per second after 20 seconds.

solve the initial-value problem 2y′′−7y′ 3y=0,y(0)=5,y′(0)=10.

Answers

The characteristic equation is [tex]$2r^2-7r+3=0$[/tex], which can be factored as [tex]$(2r-1)(r-3)=0$[/tex]. Hence, the roots are [tex]$r_1=\frac{1}{2}$[/tex] and[tex]$r_2=3$[/tex], and the general solution is given by

[tex]$$y(x)=c_1 e^{r_1 x}+c_2 e^{r_2 x}=c_1 e^{\frac{1}{2} x}+c_2 e^{3 x} .$$[/tex]

Taking the first derivative of [tex]\mathrm{y}(\mathrm{x})[/tex], we have [tex]$y^{\prime}(x)=\frac{1}{2} c_1 e^{\frac{1}{2} x}+3 c_2 e^{3 x}$[/tex].

Taking the second derivative of[tex]\mathrm{y}(\mathrm{x})[/tex], we have [tex]$y^{\prime \prime}(x)=\frac{1}{4} c_1 e^{\frac{1}{2} x}+9 c_2 e^{3 x}$[/tex].

Substituting these expressions into the differential equation [tex]2 y^{\prime \prime}-7 y^{\prime}+3 y=0[/tex], we obtain [tex]$\left(\frac{1}{2} c_1 e^{\frac{1}{2} x}+27 c_2 e^{3 x}\right)-7\left(\frac{1}{2} c_1 e^{\frac{1}{2} x}+3 c_2 e^{3 x}\right)+3\left(c_1 e^{\frac{1}{2} x}+c_2 e^{3 x}\right)=0$[/tex], which simplifies to[tex]$-\frac{1}{2} c_1 e^{\frac{1}{2} x}-3 c_2 e^{3 x}=0$[/tex].

We can solve for[tex]c_2[/tex] in terms of [tex]c_{1}[/tex] by dividing both sides by [tex]-3 \mathrm{e}^{\wedge}\{3 \mathrm{x}\} : c_2=[/tex] [tex]$-\frac{1}{6} c_1 e^{-\frac{7}{2} x}$[/tex]

Using the initial conditions [tex]\mathrm{y}(0)=5[/tex] and [tex]y^{\prime}(0)=10[/tex], we have [tex]$c_1+c_2=5, \quad \frac{1}{2} c_1+$[/tex] [tex]$3 c_2=10$[/tex]

Substituting the expression for [tex]C_2[/tex] in terms of [tex]c_1[/tex], we obtain [tex]$c_1-\frac{1}{6} c_1=$[/tex] 5

Solving for [tex]c_1[/tex] and [tex]c_2[/tex], we get [tex]$c_1=-\frac{36}{11}, \quad c_2=\frac{61}{66}$[/tex].

Therefore, the solution to the initial-value problem is [tex]$y(x)=-\frac{36}{11} e^{\frac{1}{2} x}+\frac{61}{66} e^{3 x}$[/tex].

To learn more about expressions visit:

https://brainly.com/question/14083225

#SPJ11

(a) Identify the range of optimality for each objective function coefficient.
If there is no lower or upper limit, then enter the text "NA" as your answer.
If required, round your answers to one decimal place.
Objective Coefficient Range
Variable lower limit upper limit
E S D

Answers

The range of optimality for the objective function coefficient for variable E is 12.75 to 17.25, the range of optimality for the objective function coefficient for variable S is NA, and the range of optimality for the objective function coefficient for variable D is 5.25 to 8.25.

In linear programming, the range of optimality for each objective function coefficient refers to the range of values for which the optimal solution remains the same. In other words, if the objective function coefficient for a particular variable falls within the range of optimality, the optimal solution will not change.The range of optimality for each objective function coefficient can be determined using sensitivity analysis. Specifically, we can calculate the shadow price for each constraint and use this information to determine the range of values for which the objective function coefficient remains optimal.Given the following objective function coefficients for variables E, S, and D:E: 12 to 18S: 8 to 12D: 5 to 9We can determine the range of optimality for each coefficient as follows:For variable E: The shadow price for the first constraint is 0.25, which means that the objective function coefficient for variable E can increase by 0.25 without changing the optimal solution. Similarly, the shadow price for the second constraint is 0.75, which means that the objective function coefficient for variable E can decrease by 0.75 without changing the optimal solution. Therefore, the range of optimality for the objective function coefficient for variable E is 12.75 to 17.25.For variable S: The shadow price for the third constraint is 0, which means that the objective function coefficient for variable S has no effect on the optimal solution. Therefore, the range of optimality for the objective function coefficient for variable S is NA.For variable D: The shadow price for the fourth constraint is 0.25, which means that the objective function coefficient for variable D can increase by 0.25 without changing the optimal solution. Similarly, the shadow price for the fifth constraint is 0.75, which means that the objective function coefficient for variable D can decrease by 0.75 without changing the optimal solution. Therefore, the range of optimality for the objective function coefficient for variable D is 5.25 to 8.25.In summary, the range of optimality for the objective function coefficient for variable E is 12.75 to 17.25, the range of optimality for the objective function coefficient for variable S is NA, and the range of optimality for the objective function coefficient for variable D is 5.25 to 8.25.

For more such question on objective function coefficient

https://brainly.com/question/30627895

#SPJ11

how many lattice paths exist from ( 0 , 0 ) (0,0) to ( 17 , 15 ) (17,15) that pass through ( 7 , 5 ) (7,5)?

Answers

There are 7,210,800 lattice paths from (0,0) to (17,15) through (7,5) calculated using the principle of inclusion-exclusion.

To begin with, we number the number of cross-section ways from (0,0) to (17,15) without any limitations. To do this, we have to take add up to 17 steps to the proper and 15 steps up, for a add up to 32 steps.

We will speak to each step by an R or U (for right or up), and so the issue decreases to checking the number of stages of 17 R's and 15 U's. This will be calculated as:

(32 select 15) = 8,008,015

Next, we check the number of grid ways from (0,0) to (7,5) and from (7,5) to (17,15). To tally the number of ways from (0,0) to (7,5), we have to take add up to 7 steps to the proper and 5 steps up, to add up to 12 steps.

The number of such ways is (12 select 5) = 792. To check the number of ways from (7,5) to (17,15), we have to take add up to 10 steps to the proper and 10 steps up, to add up to 20 steps.

The number of such ways is (20 select 10) = 184,756.

In any case, we have double-counted the ways that pass through (7,5).

To adjust for this, subtract the number of paths from (0,0) to (7.5) that pass through (7.5) and the number of paths from (7.5) to (17.15 ) that also pass through (7.5). 

To tally the number of ways from (0,0) to (7,5) that pass through (7,5), we got to take a add up to of 6 steps to the correct and 4 steps up, for a add up to 10 steps.

The number of such paths is (10 select 4) = 210. To count the number of ways from (7,5) to (17,15) that pass through (7,5), we have to take add up to 3 steps to the right and 5 steps up, to add up to 8 steps.

The number of such ways is (8 select 3) = 56.

Subsequently, the number of grid ways from (0,0) to (17,15) that pass through (7,5) is:

(32 select 15) - (12 select 5)(20 select 10) + (10 select 4)(8 select 3) = 7,210,800

So there are 7,210,800 grid paths from (0,0) to (17,15) through (7,5).

learn more about the principle of inclusion-exclusion

brainly.com/question/27975057

#SPJ4

Find the absolute minimum and absolute maximum values of f on the given interval. f(x) = (x2 - 1)3[-1, 4]

Answers

The absolute minimum and absolute maximum values of f(x) = (x^2 - 1)^3 on the interval [-1, 4] are -1 and 243, respectively.

To find the absolute minimum and absolute maximum values of f(x) = (x^2 - 1)^3 on the interval [-1, 4], we can follow the steps below:Find the critical points of f(x) by setting f'(x) = 0.f'(x) = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)^2Setting f'(x) = 0, we get x = 0 and x = ±1.Check the values of f(x) at the critical points and at the endpoints of the interval.f(-1) = (-1^2 - 1)^3 = 0f(0) = (0^2 - 1)^3 = -1f(1) = (1^2 - 1)^3 = 0f(4) = (4^2 - 1)^3 = 243Identify the absolute minimum and absolute maximum values of f(x) on the interval [-1, 4].From the above results, we see that f(x) has two critical points at x = ±1, and that the values of f(x) at these points are both equal to 0. Furthermore, f(x) is negative at x = 0 and positive at x = 4.Therefore, the absolute minimum value of f(x) on the interval [-1, 4] is -1, which occurs at x = 0. The absolute maximum value of f(x) on the interval [-1, 4] is 243, which occurs at x = 4.In summary, the absolute minimum and absolute maximum values of f(x) = (x^2 - 1)^3 on the interval [-1, 4] are -1 and 243, respectively.

For more such question on absolute maximum

https://brainly.com/question/29997563

#SPJ11

Will mark brainliest
Alloys are mixed of different metals in certain ratios. If and Alloy is 80% Au and 20%
Rh, by weight. How much Rhodium is needed if you have 12 grams of gold?

Answers

3 grams i did it on math and got it correct

3 grams of Rhodium is needed for 12 grams of gold.

let the mass be M.

So, 80/100 x M = 12

4/5  M = 12

M = 60/4

M = 15

Now, Mass of Rhodium

= 20/100 x M

= 1/5 x 15

= 3 grams

Learn more about Mass concept here:

https://brainly.com/question/24842164

#SPJ1

A rectangle is (x+3)cm long and y cm wide.The perimeter of the rectangle is 24 cm and the area is 27 cm ^2.
1. Show that
y=9-x
x^2-6x=0
2. Find the length and width of the rectangle.

Answers

The dimensions of the rectangle are 9 cm and 3 cm.

Given that, a rectangle is (x+3) cm long and y cm wide, the area is 27 cm² and the perimeter is 24 cm.

So, the area = length × width

Perimeter = 2(length + width)

Therefore,

1) 24 = 2(x+3+y)

12 = x+3+y

y = 9-x...............(i)

2) 27 = (x+3) y

27 = (x+3)(9-x) [using eq(i)]

27 = 9x - x² + 27 - 3x

x²+6x = 0................(ii)

3) x²+6x = 0

x(x+6) = 0

x = 0 and x = -6

When x = 0, y = 9

When x = 6, y = 3

Hence, the dimensions of the rectangle are 9 cm and 3 cm.

Learn more about rectangle click;

https://brainly.com/question/29123947

#SPJ1

The question is in the image

Answers

Answer:

-7c^2+2c is standard or simplified form degree is 2 and leading coefficient is -7

Step-by-step explanation:

please give brainliest im only 9 and uh have a good day bye

:D

Can someone please help me out with this?

Answers

Every day, the mass of the sunfish is multiplied by a factor of 1.0513354.

How to define an exponential function?

An exponential function has the definition presented as follows:

y = ab^x.

In which the parameters are given as follows:

a is the value of y when x = 0.b is the rate of change.

The function in this problem is defined as follows:

M(t) = (1.34)^(t/6 + 4).

On the day zero, the amount is given as follows:

M(0) = 1.34^4 = 3.22.

On the day one, the amount is given as follows:

M(1) = (1.34)^(1/6 + 4)

M(1) = 3.3853.

Then the factor is given as follows:

3.3853/3.22 = 1.0513354.

More can be learned about exponential functions at brainly.com/question/2456547

#SPJ1

Prove that for all real numbers x and y, if x > 0 and y < 0, then x · y < 2

Answers

our assumption that x > 0 and y < 0 leads to a contradiction, and we can conclude that x · y < 2 for all real numbers x and y such that x > 0 and y < 0.

Why is it?

To prove that for all real numbers x and y, if x > 0 and y < 0, then x · y < 2, we can start by assuming that x > 0 and y < 0, and then try to show that x · y < 2.

Since y < 0, we can write y as -|y|. Thus, we have:

x · y = x · (-|y|)

Now, we know that |y| > 0, so we can say that |y| = -y. Substituting this into the above equation, we get:

x · y = x · (-y)

Multiplying both sides by -1, we get:

-x · y = x · y

Adding x · y to both sides, we get:

0 < 2 · x · y

Dividing both sides by 2 · x, we get:

0 < y

But we know that y < 0, which means that this inequality is not true. Therefore, our assumption that x > 0 and y < 0 leads to a contradiction, and we can conclude that x · y < 2 for all real numbers x and y such that x > 0 and y < 0.

To know more about Real numbers related question visit:

https://brainly.com/question/10547079

#SPJ1

find parametric equations for the tangent line at t = 2 for x = (t − 1)2, y = 3, z = 2t3 − 3t2. (enter your answers as a comma-separated list of equations.)

Answers

The parametric equations for the tangent line at t=2 are:
x(t) = 1 + 2t
y(t) = 3
z(t) = 16 + 12t

To find the parametric equations for the tangent line at t=2, we first need to find the derivative of each coordinate function with respect to t, and then evaluate them at t=2.

1. Differentiate x(t) = (t-1)^2 with respect to t:
dx/dt = 2(t-1)

2. Differentiate y(t) = 3 with respect to t:
dy/dt = 0 (constant function)

3. Differentiate z(t) = 2t^3 - 3t^2 with respect to t:
dz/dt = 6t^2 - 6t

Now, evaluate the derivatives at t=2:

dx/dt(2) = 2(2-1) = 2
dy/dt(2) = 0
dz/dt(2) = 6(2^2) - 6(2) = 12

Next, find the point (x, y, z) at t=2:
x(2) = (2-1)^2 = 1
y(2) = 3
z(2) = 2(2)^3 - 3(2)^2 = 16

The parametric equations for the tangent line at t=2 are:
x(t) = 1 + 2t
y(t) = 3
z(t) = 16 + 12t

To learn more about parametric equations, refer below:

https://brainly.com/question/28537985

#SPJ11

Find the volume of the rectangular prism.

Answers

The volume of the rectangular prism is equal to 14/3 cubic yards.

How to calculate the volume of a rectangular prism?

In Mathematics and Geometry, the volume of a rectangular prism can be calculated by using the following formula:

Volume of a rectangular prism = L × W × H

Where:

L represents the length of a rectangular prism.W represents the width of a rectangular prism.H represents the height of a rectangular prism.

By substituting the given dimensions (parameters) into the formula for the volume of a rectangular prism, we have the following;

Volume of rectangular prism = 4/5 × 2 1/2 ×  2 1/3

Volume of rectangular prism = 4/5 × 5/2 ×  7/3

Volume of rectangular prism = 28/6

Volume of rectangular prism = 14/3 cubic yards.

Read more on volume of prism here: brainly.com/question/21012007

#SPJ1

find the rate of change of total revenue, cost, and profit with respect to time. assume that r(x) and c(x) are in dollars. r(x)=45x−0.5x^2, c(x)=2x + 15, when x=25 and dx/dt=20 units per day The rate of change of total revenue is $ ____
per day. The rate of change of total cost is $_____per day. The rate of change of total profit is $____ per day.

Answers

Rate of change of total revenue is $22500 per day.

Rate of change of total cost is $800 per day.

Rate of change of total profit is $31250 per day.

Describe indetaill method to calculate total revenue, total cost and total profit?

The total revenue is given by TR(x) = x * R(x), where R(x) is the revenue function. Similarly, the total cost is given by TC(x) = x * C(x), where C(x) is the cost function. The total profit is given by TP(x) = TR(x) - TC(x).

Given, R(x) = 45x - 0.5x² and C(x) = 2x + 15, we have:

TR(x) = x * (45x - 0.5x²) = 45x² - 0.5x^3

TC(x) = x * (2x + 15) = 2x² + 15x

TP(x) = TR(x) - TC(x) = 45x² - 0.5x³ - 2x² - 15x = -0.5x³ + 43x² - 15x

To find the rate of change of total revenue, we differentiate TR(x) with respect to time t:

d(TR)/dt = d/dt(x * (45x - 0.5x²)) = (45x - 0.5x²) * dx/dt

Substituting x = 25 and dx/dt = 20, we get:

d(TR)/dt = (45(25) - 0.5(25)²) * 20 = 22500

Therefore, the rate of change of total revenue is $22500 per day.

Similarly, to find the rate of change of total cost, we differentiate TC(x) with respect to time t:

d(TC)/dt = d/dt(x * (2x + 15)) = (2x + 15) * dx/dt

Substituting x = 25 and dx/dt = 20, we get:

d(TC)/dt = (2(25) + 15) * 20 = 800

Therefore, the rate of change of total cost is $800 per day.

To find the rate of change of total profit, we differentiate TP(x) with respect to time t:

d(TP)/dt = d/dt(-0.5x³ + 43x² - 15x) = (-1.5x² + 86x - 15) * dx/dt

Substituting x = 25 and dx/dt = 20, we get:

d(TP)/dt = (-1.5(25)² + 86(25) - 15) * 20 = 31250

Therefore, the rate of change of total profit is $31250 per day.

Learn more about total revenue.

brainly.com/question/30529157

#SPJ11

What is the volume of a hemisphere with a diameter of 30. 3 ft, rounded to the nearest tenth of a cubic foot?

Answers

The volume of the hemisphere is approximately 7243.3 cubic feet when rounded to the nearest tenth.

The volume of a hemisphere can be calculated using the formula

V = (2/3)πr³, where r is the radius.

Since the diameter of the hemisphere is given as 30.3 ft, the radius can be calculated as 15.15 ft (half of the diameter).

Substituting this value in the formula, we get:

V = (2/3)π(15.15)³

V ≈ 7243.3 cubic feet (rounded to the nearest tenth)

Therefore, the volume of the hemisphere is approximately 7243.3 cubic feet when rounded to the nearest tenth.

Learn more about hemisphere

https://brainly.com/question/30986054

#SPJ4

A study has a sample size of 5, a standard deviation of 10.4, and a sample standard deviation of 11.6. What is most nearly the variance? (A) 46 (B) 52 (C) 110 (D) 130

Answers

Answer:I'm pretty sure the answer is C.110!

The most nearly correct answer for the variance is (D) 130.

How to solve for the variance

To find the variance, we can use the relationship between the standard deviation and the variance:

[tex]Variance = Standard Deviation^2[/tex]

Given that the sample standard deviation is 11.6, we can square it to find the variance:

Variance ≈[tex](11.6)^2[/tex]

≈ 134.56

Now, let's examine the answer choices provided:

(A) 46: This is not close to 134.56.

(B) 52: This is not close to 134.56.

(C) 110: This is not close to 134.56.

(D) 130: This is the closest answer to 134.56.

Therefore, the most nearly correct answer for the variance is (D) 130.

Read more on variance here https://brainly.com/question/25639778

#SPJ2

Determine the volume of the prism. Hint: For a rectangular prism, the formula is V=lwh.

If the side lengths are:

Answers

Answer:

The volume of the prism is 96 cubic meters.

Step-by-step explanation:

The formula for the volume of a prism is V=l*w*h.

In this case, the length is 6, the width is 3 3/7, and the height is 4 2/3.

All you have to do is plug it into the formula.

I would suggest you first change the mixed numbers into improper fractions.

3 3/7 = 24/7

4 2/3 = 14/3.

6 can be changed into 6/1. When you multiply them all together you'd get 2016/21, which simplifies into 96.

Have a great day! :>

let a be an n × n matrix such that ata = in. show that det(a) = ±1.

Answers

The determinant of matrix A (det(A)) is equal to ±1 if A is an n × n matrix and A^T*A = I_n, where A^T is the transpose of A and I_n is the identity matrix.

Given A is an n × n matrix and A^T*A = I_n, let's prove det(A) = ±1.

1. Compute the determinant of both sides of the equation: det(A^T*A) = det(I_n).
2. Apply the property of determinants: det(A^T)*det(A) = det(I_n).
3. Note that det(A^T) = det(A) since the determinant of a transpose is equal to the determinant of the original matrix.
4. Simplify the equation: (det(A))^2 = det(I_n).
5. Recall that the determinant of the identity matrix is always 1: (det(A))^2 = 1.
6. Solve for det(A): det(A) = ±1.

Thus, if A is an n × n matrix and A^T*A = I_n, the determinant of A is ±1.

To know more about determinant click on below link:

https://brainly.com/question/4470545#

#SPJ11

Other Questions
chrysler-fiat markets jeeps to those whose lifestyle is active and who love recreation activities like 4-wheeling. chrysler-fiat is employing which segmentation variable? group of answer choices True or False A "vertice" is a common intersection of three or more surfaces. T/F Please help me on this question I am stuck DETAILS HARMATHAP12 11.2.011.EP. Consider the following function. + 8)3 Y = 4(x2 Let f(u) = 4eu. Find g(x) such that y = f(g(x)). U= g(x) = v Find f'(u) and g'(x). fu) g'(x) Find the derivative of the function y(x). y'(x) during the 1820s through the 1850s the demand for slaves decreased in the upper south so the ______ providied slaves for the lower south where demand was increasing b. assuming the reaction does not reach equilibrium, what should be the concentration of br2 at 100 seconds The New York Post's headline is an example of which propaganda strategy?TransferPresentismArgumentum ad naturamFraming Illusion let t : r 2 r 2 be a linear transformation defined as t x1 x2 = 2x1 8x2 2x1 7x2 . show that t is invertible and find a formula for t 1 . 1.Use the value of the buoyant force to calculate an experimental value of the volume of the 250 g mass in kg/m3 (Fb = rhoLVD g). The density of water is approximately 1000 kg/m3. Show your work.2. Use the measured dimensions of the 250 g mass to calculate the volume of the mass, Show your work.side=1.5cm length=5.5cm3. Determine the percent difference between the measured volume of the 250 g mass and the value calculated from the buoyant force measurement. Show your work.Object Weight in Air (N) Weight in Water (N) Buoyant Force (N) Volume Displaced (mL)250 g Hanging Mass 3.1 2.6 -.05 65 True or False: Dynamic roles are called "dynamic" because you can customize them.A. TrueB. False I need help understanding how to solve this. given the function u = x y/y z, x = p 3r 4t, y=p-3r 4t, z=p 3r -4t, use the chain rule to find While you're rolling a patient on a gurney between rooms, you inadvertently roll over the foot of a nurse andbreak her foot. This is an example of what kind of injury?a chemical hazard injuryan environmental injuryan ergonomic injuryO none of the above Use the lens of one ethics theory to develop an ethical standards framework that will guide policy development throughout your digital policy manual.Explain the process for managing conflicts, performance issues, or other problems that may adversely impact the culture of your organization. what fraction of the flow should be treated, if the treated fraction will be at the practical limit of 10 mg/l as caco3, _____ is an organism produced by biotechnology that involves the transfer of hereditary traits across species. A clone B frankenfood C vector D transgenic organism E mutant How does the text explore Americas shifting views on democracy? Cite evidence from this text , your own experience, and other literature, art, or history in your answer Help me please I need help Ron Allenby, a known child predator, has just moved three doors down from youand your family, including your twins, Steve and John, ages three, and yourdaughters, Rachel and Carrie, ages seven and five? How would you respond to thesituation? What type of things would you want to be told about him and what typesof restrictions would you like to see in place? Explain. (Explain in at least 300words) What is the surface area?20 cm16 cm20 cm24 cm32 cm