The product of the reaction between [tex]CH_{3}[/tex]-CH=[tex]CH_{2}[/tex] and HBr is 2-bromo-3-methylbutane.
The reaction proceeds through the addition of a proton from HBr to the double bond, followed by the addition of a bromide ion.
The addition of the proton is stereospecific, and the bromide ion will add to the carbon atom that is least substituted by hydrogen. In this case, the carbon atom that is least substituted by hydrogen is the carbon atom that is attached to two hydrogen atoms.
Therefore, the bromide ion will add to the carbon atom that is attached to the double bond and the methyl group. The product of the reaction is 2-bromo-3-methylbutane.
here is the predominant product of the reaction of [tex]CH_{3}CHCH=CH-CH_{3}[/tex] with HBr:
Know more about stereospecific reaction here:
brainly.com/question/30849463
#SPJ4
The complete question is:
Draw the predominant product(s) of the following reactions including stereochemistry when appropriate. CH CH CH -CEC-H HBr Consider EIZ stercochemistry of alkenes. Do not show stereochemistry in other cases If no reaction occurs_ raw the organic starting material. Draw one stnicture per sketcher Add additional sketchers using the drop down menu in the bottom right corner Separate multiple products using the sign from the drop-down menu: ChemDoodle Submit Answver Retry Entire Group more cirovp attempts remaining
Consider atoms of the following elements. Assume that the atoms are in the ground state.
(A) S (B) Ca (C) Ga (D) Sb (E) Br
1. The atom that contains exactly two unpaired elec¬trons
2. The atom that contains only one electron in the highest occupied energy sublevel
(A) Sulfur (S) is the atom that contains exactly two unpaired electrons, and (E) Bromine (Br) is the atom that contains only one electron in the highest occupied energy sublevel.
(A) Sulfur (S) has an electron configuration of 1s² 2s² 2p⁶ 3s² 3p⁴. The highest energy level, or valence shell, for sulfur is the third energy level (n = 3). The 3p sublevel has four electrons (3p⁴), and among them, two are unpaired. These two unpaired electrons in the 3p sublevel make sulfur the atom that contains exactly two unpaired electrons.
(E) Bromine (Br) has an electron configuration of 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁵. The highest occupied energy level for bromine is the fourth energy level (n = 4). The highest energy sublevel within the fourth energy level is the 4p sublevel. In the 4p sublevel, there are five electrons (4p⁵), and only one electron is needed to complete the sublevel. Thus, bromine contains only one electron in the highest occupied energy sublevel.
Learn more about electron configuration here:
https://brainly.com/question/29157546
#SPJ11
find the oxidation number of hydrogen in HNC.
Answer:
+1
Explanation:
The oxidation number of Hydrogen atom is +1. As Nitrogen is more electronegative than Carbon, the oxidation number of Nitrogen is - 3. The Net charge on the compound is zero.
(hope that helps)
Consider the vaporization of liquid water to steam at a pressure of 1 atm. In what temperature range is it a spontaneous process?
The vaporization of liquid water to steam is a spontaneous process when the temperature is above its boiling point at a pressure of 1 atm.
At 1 atm, the boiling point of water is 100 degrees Celsius or 212 degrees Fahrenheit. When the temperature of the water reaches or exceeds this value, the average kinetic energy of the water molecules increases, allowing more molecules to overcome the intermolecular forces and escape into the gas phase. At temperatures below the boiling point, water molecules have lower average kinetic energy, and the intermolecular forces between the water molecules are stronger. In this case, the rate of evaporation is slower, and the process is non-spontaneous. However, it is important to note that even at temperatures below the boiling point, water molecules with higher kinetic energy can still evaporate from the surface. Above the boiling point, the kinetic energy of the water molecules is sufficient to overcome the intermolecular forces completely, and the evaporation process becomes more rapid and spontaneous. The water molecules have enough energy to transition into the gas phase without requiring additional external energy input. It is crucial to maintain a temperature within the appropriate range to ensure a spontaneous vaporization process. If the temperature falls below the boiling point, the process may slow down or stop altogether. Conversely, if the temperature rises significantly above the boiling point, it may result in superheating, where the water remains in the liquid state despite being above the boiling point. This can be unstable and potentially lead to a sudden, explosive boiling known as a "bump." Therefore, maintaining a temperature within the range of the boiling point of water at 1 atm pressure ensures a spontaneous and controlled vaporization process.
Learn more about vaporization here : brainly.com/question/29430487
#SPJ11
A compound is found to be made up of 3.21 g Carbon and 1.02 g Oxygen. Determine the percent composition from this data?
Given :
A compound is found to be made up of 3.21 g Carbon and 1.02 g Oxygen.
To Find :
The percent composition from this data.
Solution :
We know, percentage composition is given by :
[tex]\%mass = \dfrac{mass}{mass of compound}\times 100[/tex]
So, percentage composition of Carbon is :
[tex]\%Carbon = \dfrac{3.21}{3.21+1.02}\times 100\\\\\%Carbon = \dfrac{3.21}{4.23}\times 100\\\\\%Carbon = 75.89 \%[/tex]
Since, compound is made up of Carbon and Oxygen.
So, %Oxygen is ( 100 - 75.89 )% = 24.11%
Hence, this is the required solution.
Which of the following stretches tend to be the least intense?
a. O-H (alcohol)
b. O-H (carboxylic acid)
c. C-H
d. C=O
e. C=C
Among the given options, the stretch that tends to be the least intense is the C-H stretch (option c). This is because the C-H bond is relatively weaker compared to other bonds, such as O-H.
Option (c) is correct.
When a molecule undergoes a vibrational stretch, the intensity of the stretch is influenced by the strength of the bond being stretched. In general, stronger bonds require more energy to stretch, resulting in higher intensity vibrational modes. Weaker bonds require less energy and have lower intensity vibrational modes.
The C-H bond is typically considered to be relatively weak compared to other bonds, such as O-H or C=O. As a result, the stretching of C-H bonds tends to have a lower intensity compared to the stretching of other bonds. This means that the C-H stretch is typically less intense and requires less energy to occur.
Therefore, the correct option is (c) C-H bond.
To learn more about C-H bond
https://brainly.com/question/11807230
#SPJ4
What does thermal energy refer to?
A. The chemical energy in reactions
B. The heat transferred between objects
C. The kinetic energy of particles within a system
D. The energy obtained from the sun
SUBMIT
Answer:
c
Explanation:
Thermal Energy has been the type of energy that refers to the kinetic energy of particles contained in a system. Hence, the correct option is (C).
What is thermal energy?
Thermal energy is the energy contained within a system as a result of its temperature. Thermodynamics, a branch of chemistry, states how heat is transmitted through multiple systems and how work is done in the process by the virtue of the first law of thermodynamics.
The thermal energy speeds the movement and collision of the particles present within the system. It is found in electric heat, geothermal, coals, etc. It is due to the kinetic energy that allows the movement of the particles.
Therefore, option C. the kinetic energy contained in the particles results in thermal energy.
Learn more about thermodynamics here:
https://brainly.com/question/1368306
#SPJ5
A reaction yields 6.26 grams of a CuCl2. What is the percent yield of CuCl2 if the theoretical yield is 18.81g?
% Yield = (Actual Yield/Theoretical Yield) x 100
Answer:
33% yield
Explanation:
6.26/18.81 =0.33280170122 = 33%
which statement best describes the reflection of a wave?
The best statement that describes the reflection of a wave is: When a wave reflects off a surface, it retains its characteristics and changes direction.
A wave is defined as a disturbance that moves through space and matter with the transfer of energy from one place to another. When the wave moves from one medium to another, it reflects off the surface. Reflection of a wave is described as the change in the direction of the wave when it bounces back from the surface on which it strikes.
When a wave reflects off a surface, the angle of incidence is equal to the angle of reflection, which is known as the law of reflection. The normal line, which is perpendicular to the surface, splits the incident and reflected waves at the point of incidence. The angle between the normal line and the incident wave is the angle of incidence, and the angle between the normal line and the reflected wave is the angle of reflection.
You can learn more about Wave at: brainly.com/question/3639648
#SPJ11
Compound X has molecular formula C5H10. In the presence of a metal catalyst, compound X reacts with one equivalent of molecular hydrogen to yield 2-methylbutane.
a. Suggest three possible structures for compound X.
b. Hydroboration-oxidation of compound X yields a product with no chirality centers. Identify the structure of compound X.
The structure of compound X is likely 2-Methyl-1-butene (CH3CH=C(CH3)CH2CH3) to yield a product without chirality centers during hydroboration-oxidation.
a. Suggesting three possible structures for compound X (C5H10) can involve considering different isomers of pentane and pentene. Here are three possibilities:
Pentane: CH3CH2CH2CH2CH3
2-Methylbutane: CH3CH(CH3)CH2CH3
2-Methyl-1-butene: CH3CH=C(CH3)CH2CH3
These structures satisfy the molecular formula C5H10 and represent different isomeric possibilities for compound X.
b. Hydroboration-oxidation of compound X yields a product with no chirality centers. This suggests that compound X must be an alkene with a symmetric or non-chiral structure. Among the three possible structures suggested above, the alkene 2-Methyl-1-butene (CH3CH=C(CH3)CH2CH3) would result in a product with no chirality centers when subjected to hydroboration-oxidation.
Learn more about metal catalyst here, https://brainly.com/question/4701542
#SPJ11
What is the oxidation number of bromine in the HBrO molecule? a. -1
b. +1 c. +2
d. -2
The oxidation number of bromine in the HBrO molecule is +1. Bromine usually has multiple oxidation states, and in HBrO, it has an oxidation state of +1, the correct answer is b.
This can be determined by assigning oxidation numbers to the other atoms in the molecule and applying the rules for assigning oxidation numbers. In HBrO, hydrogen (H) has an oxidation state of +1, and oxygen (O) typically has an oxidation state of -2. Since the sum of oxidation numbers in a neutral molecule is zero, the oxidation number of bromine (Br) is determined to be +1.
To further explain, oxidation numbers represent the hypothetical charge an atom would have if all the bonds were purely ionic. In HBrO, hydrogen (H) is typically assigned an oxidation state of +1, as it usually donates its one valence electron to form a single bond. Oxygen (O) is generally assigned an oxidation state of -2, as it commonly accepts two electrons to complete its valence shell. The sum of the oxidation numbers in HBrO is then +1 for hydrogen and -2 for oxygen, resulting in a net oxidation number of -1. Since the molecule is neutral, the oxidation number of bromine (Br) must be +1 to balance the charges and achieve a total oxidation number of zero. Therefore, the correct answer is b. +1.
To learn more about oxidation number here brainly.com/question/29263066
#SPJ11
What do you predict might happen if groundwater sources around the world continue to be depleted faster than they are restored?
I'll mark brainliest!
How many mL of water to be added to 10 mL of 0.5M solution to make 0.2 M solution?
Answer:
0.7 is the right
Explanation:
Numbers 15-21
HELP PLEASE!!
In a heat engine, 500 J of heat enters the system, and the piston does 300 J of work. What is the final internal (thermal) energy of the system if the initial energy is 1500 J?
200 J
800 J
1300 J
1700 J
Answer:
200J
Explanation:
This is because 500J - 300J = 200J
I hope this helps!!!
Answer:
1700 Joules. I Took the test.
Explanation:
Rank the following solutions in order of how acidic they are from most acidic to least acidic. (1 point) Solution A: [H3O+] of 1 x 102 M Solution B: pH 5 Solution C: [H3O+] of 1 x 10-11 M Solution D: [H3O+] of 1 x 107M Solution E: pH 9
To rank the solutions in order of acidity from most acidic to least acidic, we need to compare the concentrations of hydronium ions or pH values. Lower pH values indicate higher acidity, while higher concentrations also correspond to higher acidity.
Let's analyze each solution and determine their relative acidity:
1. Solution C: [H3O+] of 1 x 10-11 M
This solution has the lowest concentration of hydronium ions, indicating the highest acidity among the given options. Therefore, it is the most acidic solution.
2. Solution D: [H3O+] of 1 x 107 M
This solution has a significantly higher concentration of hydronium ions compared to Solution C but lower than the remaining options. It is less acidic than Solution C but more acidic than the remaining options.
3. Solution A: [H3O+] of 1 x 102 M
This solution has a higher concentration of hydronium ions compared to Solutions C and D but lower than Solution B. It is less acidic than Solutions C and D but more acidic than the remaining options.
4. Solution B: pH 5
The pH value of 5 corresponds to a [H3O+] concentration of 1 x 10-5 M. This solution has a higher concentration of hydronium ions than Solutions C, D, and A but lower than Solution E. It is less acidic than Solution C, D, and A but more acidic than Solution E.
5. Solution E: pH 9
The pH value of 9 corresponds to a [H3O+] concentration of 1 x 10-9 M. This solution has the highest pH value and the highest [H3O+] concentration among the given options. It is the least acidic solution.
Based on this analysis, the solutions ranked from most acidic to least acidic are:
1. Solution C: [H3O+] of 1 x 10-11 M
2. Solution D: [H3O+] of 1 x 107 M
3. Solution A: [H3O+] of 1 x 102 M
4. Solution B: pH 5
5. Solution E: pH 9
Learn more about acidity here:
https://brainly.com/question/31421744
#SPJ11
If a radioactive isotope has a half-life of 400 million years, how long will it take for 50% of the material to change to the daughter product?
If a radioactive isotope has a half-life of 400 million years, it will take 400 million years for 50% of the material to change to the daughter product.
How long it takes for half of the radioactive atoms to decay is known as the half-life of the isotope. A radioactive isotope's half-life is the amount of time it takes for half of the parent material to decay to the daughter product. It's worth noting that a half-life isn't a fixed amount of time for each radioactive isotope.
The following formula can be used to calculate the amount of radioactive isotope remaining after a given period of time:
t=ln(N₀/N) / λ
Where:
t= time elapsedN₀= initial quantity of isotopeN= quantity of isotope after a given timeλ= decay constantFor this problem, we need to solve for the time (t) at which 50% of the radioactive isotope has decayed:
0.5N₀ = N₀ e^(-λt)
0.5 = e^(-λt)
t = ln(0.5) / (-λ)
We know that the half-life of this isotope is 400 million years, which means that λ is equal to:
ln(2) / (400,000,000 years)
λ = 0.00000000017 / year
Substituting that value into the formula:
t = ln(0.5) / (-0.00000000017 / year)
t ≈ 400,000,000 years
Learn more about radioactive isotope: https://brainly.com/question/28039996
#SPJ11
If the Earth did not have internal energy, explain what would happen to the carbon cycle and why?
Answer: Carbon cycle wouldn't be able to create rock formation. Respiration, consumption, combustion (such as fossil burning) are all part of the carbon cycle. They would all be possible without internal energy. Except rock formation.
Explanation:
The particles of a substance lose energy and change from
a disordered structure with large distances between the particles to
a loosely ordered state.
Which change of state is described?
Answer:
A Liquid
Explanation:
structure with large distance (gas) than goes to a loosely ordered state (liquid)
I hope this helps
how much water, in grams, can be made from 3.58 × 1024 hydrogen molecules? answer in units of g.
To determine the amount of water that can be made from a given number of hydrogen molecules, the molar ratio between hydrogen and water needs to be considered. Based on the balanced chemical equation for the formation of water, 2 moles of hydrogen molecules (H2) react to form 2 moles of water (H2O). Using the Avogadro's number and molar mass of water, the calculation can be performed to find the mass of water in grams.
The balanced chemical equation for the formation of water is:
2H2(g) + O2(g) → 2H2O(l)
From the equation, it can be observed that 2 moles of hydrogen molecules (H2) react to produce 2 moles of water (H2O).
Using Avogadro's number (6.022 × 10^23 molecules per mole), we can determine the number of moles of hydrogen molecules present in 3.58 × 10^24 hydrogen molecules:
Number of moles of hydrogen = (3.58 × 10^24) / (6.022 × 10^23) = 5.95 moles
Since the molar ratio between hydrogen and water is 2:2, we can conclude that 5.95 moles of hydrogen will produce 5.95 moles of water.
To find the mass of water, we need to multiply the number of moles of water by the molar mass of water. The molar mass of water (H2O) is approximately 18.015 g/mol.
Mass of water = 5.95 moles × 18.015 g/mol = 107.17 g
Therefore, approximately 107.17 grams of water can be made from 3.58 × 10^24 hydrogen molecules.
To learn more about water molecules, refer:
brainly.com/question/29925734
#SPJ11
How do i design a controlled experiment to appropriately test a hypothesis?
Answer:
you need only one independent variable because if not, you wont know what factors have changed your experiment.
Explanation:
Think about a wooden chair and a balloon. What do these two objects always have in common?
Both are made of atoms.
Both have the same physical properties.
Both are made of the same kind of atom.
Both are made of the same number of atoms.
Answer:
both are made of atoms. .
Answer:
Both are made of atoms.
Explanation:
What is the herbivore in the following food chain: algae → fish → herons?
Answer:
algae
Explanation:
fish and herons arent herbivores
Herbivores are typically tagged as animals that feeds directly on the plants in a food chain.
In the given food chain, Fish is the herbivore
As stated, Fish in the food chain is the herbivore as it feeds directly on the plants. The algae in this case is the producer. While the herons are the carnivore that feeds directly on the flesh of the fish but indirectly on the algae.
Learn more about food chains: https://brainly.com/question/16504883
Calcular la masa de Mg que se necesita hacer reaccionar con CuSO4 para formar 1.89 g de Cu2O según la siguiente ecuación: Mg + CuSO4 + H2O MgSO4 + Cu2O + H2
Answer:
0.642 g
Explanation:
La ecuación balanceada es:
2Mg + 2CuSO₄ + H₂O → 2MgSO₄ + Cu₂O + H₂Primero convertimos 1.89 g de Cu₂O en moles, usando su masa molar:
1.89 g ÷ 143.09 g/mol = 0.0132 mol Cu₂ODespués convertimos moles de Cu₂O en moles de Mg, usando los coeficientes estequiométricos:
0.0132 mol Cu₂O * [tex]\frac{2molMg}{1molCu_2O}[/tex] = 0.0264 mol MgFinalmente convertimos moles de Mg en gramos, usando la masa molar de Mg:
0.0264 mol Mg * 24.305 g/mol = 0.642 gFor the Experiment, 10 mL of a DIVA Sciences’ White Vinegar sample will be dispensed and diluted to 100 mL in a 100-mL Volumetric Flask. Determine the range of initial concentrations.
Diluted DIVA Sciences’ White Vinegar (5%) Solution = ____________________ M
Diluted DIVA Sciences’ White Vinegar (8%) Solution = ____________________ M
To determine the range of initial concentrations, we need to consider the dilution process and the given information.
The initial volume of the vinegar sample is 10 mL, and it is diluted to a final volume of 100 mL. Therefore, the dilution factor is calculated by dividing the final volume by the initial volume:
Dilution factor = Final volume / Initial volume = 100 mL / 10 mL = 10
The diluted solutions are prepared by adding 10 mL of the vinegar sample to a 100 mL volumetric flask and filling it up to the mark with water. So, the final volume of each diluted solution is 100 mL.
Given that the diluted solutions are prepared from the original vinegar sample, we can infer that the percentage concentration refers to the mass/volume percentage. In this case, the percentages (5% and 8%) represent the mass of acetic acid (the main component of vinegar) present in 100 mL of the original sample.
To calculate the molarity of the diluted solutions, we need to know the molar mass of acetic acid, which is approximately 60.05 g/mol.
For the 5% solution:
Mass of acetic acid in 100 mL = (5 g / 100 mL) × 100 mL = 5 g
Using the molar mass, we can convert the mass of acetic acid to moles:
Moles of acetic acid = Mass of acetic acid / Molar mass = 5 g / 60.05 g/mol
Now, we can calculate the molarity:
Molarity (5% solution) = Moles of acetic acid / Final volume (in liters) = (5 g / 60.05 g/mol) / 0.1 L
For the 8% solution, we follow the same steps:
Mass of acetic acid in 100 mL = (8 g / 100 mL) × 100 mL = 8 g
Moles of acetic acid = Mass of acetic acid / Molar mass = 8 g / 60.05 g/mol
Molarity (5% solution) ≈ 0.833 M (rounded to three decimal places)
Molarity (8% solution) ≈ 1.333 M (rounded to three decimal places)
Therefore, the range of initial concentrations is approximately 0.833 M to 1.333 M for the diluted DIVA Sciences' White Vinegar solutions.
Learn more about concentration here : brainly.com/question/3045247
#SPJ11
An amphoteric species is neither an acid nor a base. True or False
Answer: False
Explanation: just took on edge
Which of the following cannot be metabolized to make molecules that can enter the citric acid cycle? a. carbohydrates b. lipids c. proteins
d. metal ions
The one that cannot be metabolised to make molecules that can enter the citric acid cycle is d. metal ions.
Carbohydrates, lipids, and proteins can all be metabolized to produce molecules that can enter the citric acid cycle (also known as the Krebs cycle or TCA cycle). These molecules can be converted into acetyl-CoA, a key intermediate in the citric acid cycle, through various metabolic pathways.
Carbohydrates can be broken down into glucose, which can then undergo glycolysis to produce pyruvate. Pyruvate can be further converted into acetyl-CoA, which enters the citric acid cycle.
Lipids (fats) can be hydrolyzed to release fatty acids and glycerol. Fatty acids are broken down through beta-oxidation, resulting in the production of acetyl-CoA. Glycerol can also be converted into glyceraldehyde-3-phosphate, an intermediate in glycolysis that can generate pyruvate and subsequently acetyl-CoA.
Proteins can be broken down into amino acids through protein digestion and cellular processes such as proteolysis. Amino acids can enter various metabolic pathways, some of which lead to the production of intermediates that can feed into the citric acid cycle.
Learn more about critic acid cycle here, https://brainly.com/question/14900762
#SPJ11
The atomic number of a made-up element is 413. What would you also know about this element with the given information?
Answer:
number of protons in the atom
Explanation:
Everything else has something to do with neutrons or weight, which you cannot know from just the atomic number. The atomic number is how many protons are in an element
Which statement correctly describes extreme weather?
O A. Extreme weather events follow normal climate patterns.
o O B. Extreme weather events are random occurrences.
O C. Extreme weather events started with global warming.
O D. Extreme weather events are unpredictable until they strike.
Answer: A
Explanation:
Extreme weather events follow normal climate patterns.
Which two elements on the periodic table share the same period and are both gases?
A. Hydrogen and Helium
B. Fluorine and Bromine
C. Lithium and Potassium
D. Xenon and Argon
What is the absolute magnitude of the rate of change for [NH₃] if the rate of change for [H₂] is 8.70 m/s in the reaction 2 NH₃(g) → N₂(g) + 3 H₂(g)?
a. 4.35 m/s
b. 8.70 m/s
c. 17.40 m/s
d. 26.10 m/s
Given, the balanced chemical equation is:
2 NH₃(g) → N₂(g) + 3 H₂(g)
The absolute magnitude of the rate of change for [NH₃] is 4.35 m/s.
Therefore, option A is the correct answer.
Given, the balanced chemical equation is:
2 NH₃(g) → N₂(g) + 3 H₂(g)
The rate of change for H2 is 8.70 m/s.
To find the absolute magnitude of the rate of change for [NH₃], we have to use the stoichiometric coefficient in the balanced chemical equation. From the balanced chemical equation, 2 mol NH₃ reacts with 3 mol H₂
We can write,
Rate of change of NH₃ (in m/s) = -1/2 * rate of change of H₂ (in m/s)
So,Rate of change of NH₃ = -1/2 * 8.70 m/s= -4.35 m/s
The absolute magnitude of the rate of change for [NH₃] is 4.35 m/s.
Therefore, option A is the correct answer.
To know more about balanced chemical equation visit:
https://brainly.com/question/14072552
#SPJ11