Determine experimentally which rotational axis yields the maximum rotational inertia (i.e., moment of inertia) and which yields the minimum rotational inertia for the broom stick. Draw a picture of the broom stick with its axis of rotation for (i) the minimum rotational inertia and (ii) the maximum rotational inertia.

Answers

Answer 1

Answer:

  the maximum is I₁ axis of rotation at the end

     the minimum moment is I₂ axis of rotation at the center of mass

Explanation:

For this exercise we use the definition moment of inertia

          I = ∫ r² dm

for bodies of high symmetry it is tabulated; In this case we can approximate a broomstick to a thin rod, the moment of inertia with respect to a perpendicular axis when varying are

at one end

           I₁ = ⅓ mL²

in in center

           I₂ = [tex]\frac{1}{12}[/tex] m L²

There is another possible axis of rotation around the axis of the broom, in this case we have a solid cylinder

           I₃ = [tex]\frac{1}{2}[/tex] m r²

remember that the diameter of the broom is much smaller than its length, therefore this moment of inertia is very small

when examining the different moments of inertia:

     the maximum is I₁ axis of rotation at the end

     the minimum moment is I₂ axis of rotation at the center of mass


Related Questions

Conductivity in aqueous solutions, is a measure of the ability of water to conduct an electric current.

a. True
b. False

Answers

Answer:

true

Explanation:

i think its true beacuse water can cause electricity

pls let me know if corrct

if yes pls mark brainlest

The acceleration of a moving object is equal to

Answers

Answer:

Acceleration = Δv/Δt or change in velocity over change in time

Explanation:

4. While cleaning your bedroom, you move your mattress to vacuum underneath your bed. You use a force of 48 N to move the mattress 1.5 meters out of the way. How much work was done?

Answers

Answer:

72 J

Explanation:

Use the Work formula

W= F x d

Given:

F - 48 N

d - 1.5 m

Solution:

W= F x d

W=  48 N x 1.5 m

W= 72 J

Equation for Specific latent heat

Answers

The Equation For Specific Latent Heat is as Follows: Specific Latent Heat = Thermal Energy / Mass

A proton moves at a speed of 0.12 x 10^7 m/s
at right angles to a magnetic field with a
magnitude of 0.58 T.
Find the magnitude of the acceleration of
the proton. The elemental charge is 1.60 x
10^-19 C.
Answer in units of m/s?.

Answers

Answer:

13/23 ydfffgggggggffttf


Which letter represents the
South American Plate

Answers

Answer:

B

Explanation:

Where it shows on the map is B

Equal amounts of heat are added to equal masses of ice and copper at the same initial temperature. Which substance will have the higher final temperature?
ice
copper

How much greater will that temperature change be than the temperature change of the other substance?
larger ΔT/smaller ΔT
= ?

Answers

One of the major effects of heat transfer is temperature change: heating increases the temperature while cooling decreases it. We assume that there is no phase change and that no work is done on or by the system. Experiments show that the transferred heat depends on three factors—the change in temperature, the mass of the system, and the substance and phase of the substance.

Figure a shows a copper-colored cylinder of mass m and temperature change delta T. The heat Q, shown as a wavy rightward horizontal arrow, is transferred to the cylinder from the left. To the right of this image is a similar image, except that the heat transferred Q prime is twice the heat Q. The temperature change of this second cylinder, which is also labeled m, is two delta T. This cylinder is surrounded by small black wavy lines radiating outward. Figure b shows the same two cylinders as in Figure a. The left cylinder is labeled m and delta T and has a wavy heat arrow pointing at it from the left that is labeled Q. The right cylinder is labeled two m and delta T and has a wavy heat arrow pointing to it from the left labeled Q prime equals two Q. Figure c shows the same copper cylinder of mass m and with temperature change delta T, with heat Q being transferred to it. To the right of this cylinder, Q prime equals ten point eight times Q is being transferred to another cylinder filled with water whose mass and change in temperature are the same as that of the copper cylinder.

to measure the static friction coefficient between a block and a vertical wall, a spring is attached to the block, is pushed on the end in a direction perpendicular to the wall until the block does not slip downward. If the spring is compressed, what is the coefficient of static friction

Answers

Answer:

μ = mg/kx

Explanation:

Since the bock does not slip, the frictional force equals the weight of the block. So, F = mg. Now, the frictional force, F = μN where μ = coefficient of static friction and N = Normal force.

Now, the normal force equals the spring force F' = kx where k = spring constant and x = compression of spring.

N = F' = kx

So, F = μN = μkx

μkx = mg

So, μ = mg/kx

A trailer truck with a 2000 [kg] cab and a 8000 [kg] trailer is traveling on a level road at 90 [km/hr].The brakes on the trailer fail, and the anti-skid system of the cab provides the largest possible forcewhich will not cause the wheels of the cab to slide. Knowing that the coefficient of static friction isμs= 0.65, determine (a) the shortest time for the rig to come to a stop, (b) the force in the couplingduring that time.

Answers

Answer:

a)   t = 19.6 s, b) fr = 1.274 10⁴ N

Explanation:

This is a Newton's second law problem

Y Axis

for the cabin

        N₁-W₁ = 0

        N₁ = W₁

for the trailer

        N₂- W₂ = 0

        N₂ = W₂

X axis

for the cabin plus trailer, where friction is only in the cabin

         fr = (m₁ + m₂) a

the friction force equation is

        fr = μ N

we substitute

       μ N₁ = (m₁ + m₂) a

        μ m₁ g = (m₁ + m₂) a

        a = μ g    [tex]\frac{m_1}{m_1 + m_2}[/tex]

         

let's calculate

         a = 0.65 9.8    [tex]\frac{2000}{2000+8000}[/tex]

         a = 1,274 m / s²

a) to find the stopping distance we can use kinematics

         Let's slow down the sI system

         v₀ = 90 km / h (1000 m / 1km) (1h / 3600s) = 25 m / s

         v = v₀ - a t

when it is stopped its speed is zero

           0 = v₀ - at

           t = v₀ / a

           t = 25 / 1.274

           t = 19.6 s

b) the friction force is

           fr = 0.65 2000 9.8

          fr = 1.274 10⁴ N

This is the braking force and also the forces that couple the cars.

a cat is being chased by a dog both are running in a straight line at constant speed. The cat has a headstart

Answers

The cat wins gsisndhisnsbdid disks subs

two identical springs, each with a spring force constant k, are attached end to end. If a weight is hung from a single spring, it stretches the spring by a distance d. When this same mass is hung from the end of the two springs, which, again, are connected end-to-end, the total stretch of these springs is

Answers

Answer:

Δx = 2*d

Explanation:

According to Hooke's Law, in order to the mass be in equilibrium, when attached to one spring, no net force must act on it, so the algebraic sum of the elastic force and gravity must be zero, as follows:

        [tex]k*\Delta x = m*g (1)[/tex]

If we hang the mass from the end of the two springs attached end to end, in order to be in equilibrium, the total elastic force must be equal to gravity, as we have already said.We can express this elastic force, as the product of a Keff times the distance stretched by the two springs combined, as follows:

       [tex]F = k_{eff} * \Delta x_{eff} = m*g (2)[/tex]

Due to F is a tension, it will be the same at any point of the chain of springs, so we can write the following expression, for the distance stretched by any of the springs:

       [tex]\Delta x_{1} = \frac{F}{\ k_{1} } (3)[/tex]

The total distance stretched will be the sum of the distances stretched by any spring individually:

       [tex]\Delta x_{} = \frac{F}{\ k_{1} } + \frac{F}{\ k_{2} } (4)[/tex]

Replacing (4) in (2) and rearranging, we have:

       [tex]\frac{F}{k_{eff} } = \frac{F}{\ k_{1} } + \frac{F}{\ k_{2} } (5)[/tex]

      Since k₁ = k₂ = k, we can find keff, as follows:

      [tex]k_{eff} = \frac{k^{2} }{2*k} = \frac{k}{2} (6)[/tex]

Replacing (6) in (2), and making (2) equal to (1) we finally get:

     [tex]F = \frac{k}{2} * \Delta x_{eff} = k*\Delta x = m*g (7)[/tex]

Solving for Δxeff:

       [tex]\Delta x_{eff} = \frac{2*k*\Delta x}{k} = 2* \Delta x = 2*d (8)[/tex]

A capacitor with an initial potential difference of 100 V is discharged through a resistor when a switch between them is closed at t 0.At t 10.0 s, the potential difference across the capacitor is 1.00 V. (a) What is the time constant of the circuit

Answers

Answer:

τ = RC = 2.17 s

Explanation:

The voltage through a capacitor can't change instantaneously, so immediately after the switch is closed, the potential difference will keep at 100 V.This voltage will produce a flow of charge (a current) from the capacitor to the resistor, which will be diminishing continuously, till the capacitor be totally discharged, and the current becomes zero.The voltage through the capacitor will follow an exponential function of time, as follows:

       [tex]V_{C} =V_{o} * e^{-t/RC} (1)[/tex]

Replacing by the givens in (1):

       [tex]V_{C} = 1.00 V\\V_{o} = 100V\\t = 10.0 s[/tex]

      [tex]\frac{1.00V}{100 V} = e^{-10s/RC} (2)[/tex]

Taking ln on both sides in (2), and solving for RC, we have:

       [tex]R*C= \frac{-10s}{ln 0.01} = 2.17s (3)[/tex]

So, the time constant of the circuit (the product of R times C) is equal to 2.17s.

A satellite, moving in an elliptical orbit, is 368 km above Earth's surface at its farthest point and 164 km above at its closest point. (a) Calculate the semimajor axis of the orbit. Incorrect: Your answer is incorrect. m (b) Calculate the eccentricity of the orbit. Incorrect: Your answer is incorrect. Did you find the semimajor axis a from the greatest and smallest radii

Answers

Answer:

a) 6636 km

b) 0.0154

Explanation:

The height above the earth at its furthest point is 368 km

The height above the earth at its closest point is 164 km

Radius of the Earth is 6370 km

The distance of the satellite from the center of the earth to the furthest point is 6370 + 368 km = 6738 km

The distance of the satellite from the center of the earth to the closest point is 6370 + 164 = 6534 km

If we add together the sum of the distance of the satellite from the furthest and its closest distance, it is equal to the 2 major semi axis.

Basically,

2a = R + r

a = (R + r) / 2

a = (6738 + 6534) / 2

a = 13272 / 2

a = 6636 km

Eccentricity, e = (a - r) / a

Eccentricity, e = (6636 - 6534) / 6636

Eccentricity, e = 102 / 6636

Eccentricity, e = 0.0154

2. Bank robbers have pushed a 1000 kg safe to a second story floor-to-ceiling window. They plan to break the window, then lower the safe 3.0 m to their truck. They stack up 500 kg of furniture, tie a rope between the rope and the furniture, and then place the rope over a pulley. Then they push the safe out of the window. What is the safe speed when it hits the truck

Answers

Answer:

5.4 m/s

Explanation:

Given that

Mass of the safe, m1 = 1000 kg

Distance to lower the safe, d = 3 m

Mass of furniture, m2 = 500 kg.

Speed of the safe, v = ?

To get the final speed by the time that the safe hits the truck, we first find its acceleration.

The total mass of the system is M = 1000 + 500 kg = 1500 kg

One of the forces acting on the system is that of gravity, and it acts on the safe friction acting on the furniture. Using the formula, we have

= m1*g - mu*m2g

= 1000 * 9.81 - 0.5 * 500 * 9.81

= 7357.5 N

From this calculated weight, we find the acceleration.

Acceleration, a = F/m

Acceleration, a = 7357.5 / 1500

Acceleration, a = 4.905 m/s²

From the question, we know that the Initial speed = 0 m/s

So, employing the use of one of the equations of motion, we have

v² - u² = 2aS

v² - 0 = 2 * 4.905 * 3

v² = 29.43

v = √29.43

v = 5.4 m/s

Which correctly lists three places that fresh water is found?

rivers, oceans, lakes
oceans, coastal wetlands, seas
ice sheets, water vapor, rivers
water vapor, streams, oceans

Answers

The three places where fresh water can be found is ice sheets, water vapor, and rivers.

What is fresh water?

A fresh water is any type of naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids.

Where fresh water can be found

Fresh water can be found in the following locations;

ice sheets, water vapor, rivers

Thus, the three places where fresh water can be found is ice sheets, water vapor, and rivers.

Learn more about fresh waters here: https://brainly.com/question/4432187

Part A
Playing in the street, a child accidentally tosses a ball (mass m) with a speed of v=18 m/s toward the front of a car (mass M) that is moving directly toward him with a speed of V=20 m/s . Treat this collision as a 1-dimensional elastic collision. After the collision, the ball is moving with speed v′ back toward the child and the car is moving with speed V′ in its original direction.

Part B
When we combine the equation from Part A with the conservation of momentum equation, we can solve for both final speeds. This relationship will involve the masses of the ball and the car, but we can apply a simplifying assumption: the car is so massive compared with the ball that its speed will not change at all as a result of this collision. Translate this sentence into an equation, what is V′ equal to? Now, having made this assumption, it becomes possible to solve the equation from Part A for the final speed of the ball, what is it?

Answers

Answer:

v' = -18 m/s

Explanation:

Assuming no external forces acting during the collision, total momentum must be conserved, as follows:

       [tex]p_{o} = p_{f} (1)[/tex]

The initial momentum can be expressed as follows (taking as positive the initial direction of the ball):

       [tex]m_{b} * v_{b} -M_{c}*V_{c} = m_{b} * 18 m/s + (-M_{c}* 20 m/s) (2)[/tex]

The final momentum can be expressed as follows (since we know that v'b is opposite to the initial vb):

        [tex]-(m_{b} * v'_{b}) + M_{c}*V'_{c} (3)[/tex]

If we assume that Mc >> mb, we can assume that the car doesn't change its speed at all as a result of the collision, so we can replace V'c by Vc in (3).So, we can write again (3) as follows:

       [tex]-(m_{b} * v'_{b}) +(- M_{c}*V_{c}) = -(m_{b} * v'_{b}) + (-M_{c} * 20 m/s) (4)[/tex]

Replacing (2) and (4) in (1), we get:

       [tex]m_{b} * 18 m/s + (-M_{c}* 20 m/s) = -(m_{b} * v'_{b}) + (-M_{c} * 20 m/s) (5)[/tex]

Simplifying, and rearranging, we can solve for v'b, as follows:[tex]v'_{b} = -18 m/s (6)[/tex], which is reasonable, because everything happens as if the ball had hit a wall, and the ball simply had  inverted its speed after the collision.

identify the types of motion in each activity.1.walking a long a hallway. 2.motion of the blades of the fan. 3.earths rotation 4.ball moving on the ground. 5.soldiers marching.​

Answers

Answer:

1) Linear motion

2) Rotational motion

3) Rotational Motion

4) Random Motion ( The ball can be rolling in any direction)

5) Linear motion

The types of motion in each activity include the following:

Walking a long a hallway- Linear motion Motion of the blades of the fan- Rotational motionEarths rotation- Rotational motion Ball moving on the ground- Random motion Soldiers marching- Linear motion.

What is Motion?

This involves an object or a body changing position over time. There are

different types of motion with different examples as can be seen above in

this scenario.

Read more about Motion here https://brainly.com/question/453639

A 175-kg roller coaster car starts from rest at the top of an 18.0-m hill and rolls down the hill, then up a second hill that has a height of 8.0 m. When the car reaches the top of the second hill, its speed is 11 m/s. Determine the work done by non-conservative forces on the car as it travels from the top of the first hill to the top of the second hill.

Answers

Answer:

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem we present the equations that describe the situation of the roller coaster car on each top of the hill. Let consider that bottom has a height of zero meters.

From top of the first hill to the bottom

[tex]m\cdot g \cdot h_{1} = \frac{1}{2}\cdot m\cdot v_{1}^{2} +W_{1, loss}[/tex] (1)

From the bottom to the top of the second hill

[tex]\frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2}+W_{2,loss}[/tex] (2)

Where:

[tex]m[/tex] - Mass of the roller coaster car, in kilograms.

[tex]v_{1}[/tex] - Speed of the roller coaster car at the bottom between the two hills, in meters per second.

[tex]g[/tex] - Gravitational acceleration, in meters per square second.

[tex]h_{1}[/tex] - Height of the first top of the hill with respect to the bottom, in meters.

[tex]W_{1, loss}[/tex] - Work done by non-conservative forces on the car between the top of the first hill and the bottom, in joules.

[tex]v_{2}[/tex] - Speed of the roller coaster car at the top of the second hill, in meters per seconds.

[tex]h_{2}[/tex] - Height of the second top of the hill with respect to the bottom, in meters.

[tex]W_{2, loss}[/tex] - Work done by non-conservative forces on the car bewteen the bottom between the two hills and the top of the second hill, in joules.

By using (1) and (2), we reduce the system of equation into a sole expression:

[tex]m\cdot g\cdot h_{1} = m\cdot g\cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2} + W_{loss}[/tex] (3)

Where [tex]W_{loss}[/tex] is the work done by non-conservative forces on the car from the top of the first hill to the top of the second hill, in joules.

If we know that [tex]m = 175\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]h_{1} = 18\,m[/tex], [tex]h_{2} = 8\,m[/tex] and [tex]v_{2} = 11\,\frac{m}{s}[/tex], then the work done by non-conservative force is:

[tex]W_{loss} = m\cdot\left[ g\cdot \left(h_{1}-h_{2}\right)-\frac{1}{2}\cdot v_{2}^{2} \right][/tex]

[tex]W_{loss} = 6574.75\,J[/tex]

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

Calculate the size of the magnetic field 20 m below a high voltage power line. The line carries 450 MW at a voltage of 300,000 V. Group of answer choices 0.237 T 0.0237 T 0.474 T 2.37 T 0.237 J

Answers

Answer:

[tex]1.5 \times 10^{-5} \mathrm{~T}[/tex].

Explanation:

Power carried by the line [tex]=P=450 \mathrm{MW}=450 \times 10^{6} \mathrm{~W}[/tex]

Voltage across the line Volts

Current flowing in the line =i

Size of magnetic field =B

Distance from the line

Formula Used:

Current flowing is given as

[tex]i=\frac{P}{\Delta V}[/tex]

Magnetic field by the current carrying wire is given as

[tex]B=\left(\frac{\mu}{4 \pi}\right)\left(\frac{2 i}{r}\right)[/tex]

Inserting the values

 [tex]B=\left(10^{-7}\right)\left(\frac{2(1500)}{(20)}\right) \\ B=1.5 \times 10^{-5} \mathrm{~T}[/tex]

Conclusion:

Thus, the magnetic field comes out to be [tex]1.5 \times 10^{-5} \mathrm{~T}[/tex].

what is the reaction of zinc nitrate mixed with silver. It's a lab and we are supposed to show what the difference, or any reaction including physical, that would happen.

Answers

Answer:

b

Explanation:

The speed of sound in air is around 330 m/s. If a bat emits a single high-pitched ‘click’ of sound in a cave that is 25m wide, calculate the time taken for the echo of the sound to return to the bat.

Answers

Answer:

0.15 s

Explanation:

From the question given above, the following data were obtained:

Speed of sound (v) = 330 m/s

Distance (x) = 25 m

Time (t) =?

The time taken for the echo of the sound to the bat can be obtained as follow:

v = 2x / t

330 = 2 × 25 / t

330 = 50 / t

Cross multiply

330 × t = 50

Divide both side by 330

t = 50 / 330

t = 0.15 s

Thus, it will take 0.15 s for the echo of the sound to the bat

An astronomer studies an image taken by a satellite in space and sees an area of gas, dust, and many stars distributed along spiral arms. What is the astronomer most likely seeing?

Answers

Answer:the answer is galaxy

Explanation:

A piano string having a mass per unit length equal to 4.80 ✕ 10−3 kg/m is under a tension of 1,200 N. Find the speed with which a wave travels on this string.

Answers

Answer:

500 m/s

Explanation:

From the question,

V = √(T/m')................. Equation 1

Where V = Speed with which the wave travels on the string, T = Tension of the string, m' = Mass per unit length of the string.

Given: T = 1200 N, m' = 4.80×10⁻³ kg/m

Substitute these values into equation 1

V = √(1200/4.80×10⁻³)

V = √(250000)

V = 500 m/s

Hence the speed of the wave in the string is 500 m/s

When a helicopter flies, what
type of energy is it using?
A. Thermal energy
B. Mechanical energy
C. Electromagnetic energy

Answers

Answer: B. Mechanical energy

Explanation: "Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. Mechanical energy can be either kinetic energy (energy of motion) or potential energy (stored energy of position)."

"Potential and kinetic energy of an object as it is stored and moved. Examples of MECHANICAL ENERGY- roller coasters, hydraulic lift, bow and arrow, and helicopters. Helicopters, cars, roller coasters, all moving objects that are being acted on by a force."

Incorrect options: A. Thermal energy and B. Electromagnetic energy. (explanation on both below)

"Thermal energy (also called heat energy) is produced when a rise in temperature causes atoms and molecules to move faster and collide with each other. The energy that comes from the temperature of the heated substance is called thermal energy."

"Electromagnetic radiation, in classical physics, the flow of energy at the universal speed of light through free space or through a material medium in the form of the electric and magnetic fields that make up electromagnetic waves such as radio waves, visible light, and gamma rays."


Answer: B Mechanical energy

A thin uniform-density rod whose mass is 3.0 kg and whose length is 2.6 m rotates around an axis perpendicular to the rod, with angular speed 37 radians/s. Its center moves with a speed of 13 m/s. (a) What is its rotational kinetic energy

Answers

Answer:

rotational kinetic energy is 1156.81 J

Explanation:

Given the data in the question;

first we find the moment of inertia of the rod as axis passes through the middle or center;

[tex]I = \frac{1}{12}ml^2[/tex]

where m is the mass of the road( 3.0 kg)

[tex]l[/tex] is the length of the rod ( 2.6 m )

so we substitute

[tex]I = \frac{1}{12}[/tex] × 3 × (2.6)²

[tex]I[/tex] =   1.69 kg.m²

now, to calculate the rotational kinetic energy,

kinetic energy due to rotation is;

KE[tex]_R[/tex] = [tex]\frac{1}{2}Iw^2[/tex]

where [tex]I[/tex] is moment of inertia( 1.69 kg.m² ),

w is angular frequency ( 37 radians/s )

we substitute

KE[tex]_R[/tex] = [tex]\frac{1}{2}[/tex] × 1.69 × ( 37 radians/s )²

KE[tex]_R[/tex] = 1156.81 J

Therefore, rotational kinetic energy is 1156.81 J

The rotational kinetic energy will be 1156.81 J. It is half of the product of the moment of inertia and angular speed.

What is rotational kinetic energy?

The rotational kinetic energy is the kinetic energy generated by an object's rotation and It is a component of its overall kinetic energy.

The given data in the problem is;

m is the mass = 3.0 kg

l is the length = 2.6 m

[tex]\rm \omega[/tex] is the angular speed = 37 radians/s

v is the speed = 13 m/s

[tex]\rm E_k[/tex] is the  rotational kinetic energy=?

The momentum of inertia is found by;

[tex]\rm I = \frac{1}{12} ml^2 \\\\ \rm I = \frac{1}{12} \times 3 \times (2.6)^2 \\\\\ \rm I = 1.69 \kg.m^2[/tex]

The rotational kinetic energy is found by;

[tex]\rm E_k= \frac{1}{2}I (\omega)^2 \\\\ \rm E_k= \frac{1}{2}\times 1.69 (37)^2 \\\\ \rm E_k=1156.81 \ J[/tex]

Hence the rotational kinetic energy will be 1156.81 J.

To learn more about the rotational kinetic energy refer to the link;

https://brainly.com/question/19305456

0. What is centripetal accleration?Derive relation for it​

Answers

Answer:

Centripetal acceleration is defined as the property of the motion of an object, traversing a circular path. Any object that is moving in a circle and has an acceleration vector pointed towards the center of that circle is known as Centripetal acceleration. ... Centripetal means towards the center.

Define as property of motion

Why does ice reflect more energy compared to water?

Answers

Answer:

while ice is made by water again it melts and becomes water. water is colourless and odourless and has no taste but ice is only cold and hard. water is used for drinking and other things. but is for freshness and it never flows

Explanation:

so ice reflect more energy compared to water

A land breeze forms when:

a) cool air moves down off a mountain towards the coast

b) warm air rises up a mountain slope

c) cool air moves onto a shore from a large body of water

d) warm air from the land moves towards the water

Answers

Explanation:

Its D. The warm air from the land moves towards the water



Based on the image which parachuter will fall fastest
A
B
Or C

Answers

Explanation:

c willl fall fast then a and b

Explain why Large change in temperature makes heat flow fast and a small change does not.

Answers

Answer: Because of the amount of energy

Explanation: Heat is an energy, and small amounts of it does not effect large areas, whereas a very large blast of heat energy can greatly effect the air

Other Questions
What is the answer? Thank u can someone help me please??!?! Which dictionary definition of interview best applies to its use in the selected sentence? In some places, the rain was so heavy that we had to stop driving.adverb modifying heavyadverb modifying wasadjective modifying heavyadjective modifying rainadjective modifying some Ammonia (NH3) is widely used as a fertilizer and in many household cleaners. How much ammonia is produced when 5.81 mol of hydrogen gas react with an excess of nitrogen gas? 1) Complete the sentence by choosing the correct form of the conditional tense.J'________ aller en France cet t. (aimer) aime aimais aimerais aimeraiQuestion 2Complete the sentence by choosing the correct form of the conditional tense.Tu ________ le film si tes parents disaient oui. (regarder) regarderais regardes regarderas regardaisQuestion 3Complete the sentence by choosing the correct form of the conditional tense.Vous ________ vos devoirs vite si vous alliez au concert. (finir) finissiez finiriez finirez finissezQuestion 4Complete the sentence by choosing the correct form of the conditional tense.Je ________ dans un restaurant chic si j'allais Paris. (manger) mangerais mange mangeais mangeraiQuestion 5Complete the sentence by choosing the correct form of the conditional tense.Je ________ beaucoup de courses si j'avais de l'argent. (faire) ferais fais ferai faisaisQuestion 6Complete the sentence by choosing the correct form of the conditional tense.Tu ________ tous les soirs si tes parents disaient oui. (sortir) sors sortais sortiras sortiraisQuestion 7Complete the sentence by choosing the correct form of the conditional tense.Ils ________ s'ils avaient de l'argent. (voyager) voyagent voyageraient voyageront voyageaientQuestion 8Complete the sentence by choosing the correct form of the conditional tense.Si vous gagniez la loterie, vous ________ riche! (tre) tes seriez serez tiezQuestion 9Complete the sentence by choosing the correct form of the conditional tense.Il ________ aller en France cet t, s'il avait le temps. (aimer) aime aimerai aimait aimeraitQuestion 10Complete the sentence by choosing the correct form of the conditional tense.Elles ________ franais si elles taient en France. (parler) parlaient parlent parleront parleraient Which of the following would likely be the most helpful for determining the age of a fossil in a certain layer of rock? please help asap!Find x. Round to the nearest tenth: 12 cm 22 cm 420 x = [?] Law of Sines: sin A sin c sin B b a C Enter This for an assignment? I NEED HELP? Consider this chemical equation:2AgNO3(aq) + Cu(s) Cu(NO3)2(aq) + 2Ag(s)Which substances dissolve in solution? Select allthat apply.AgNO3CuCu(NO3)2AgAnswer is:AgNO3 and Cu(NO3)2 Please!! Ill mark the brainliest!!Please write down three scenarios your think of when you hear the word "resistance" Larry invests $100 in a savings plan. The plan pays 5 1/2% interest each year onhis $100 account balance. The following chart shows the balance on his accountafter each year for the next 5 years. He did not make any deposits orwithdrawals during this time. Which statement about sharecropping is correct?Sharecroppers worked the land for a portion of the harvest.Sharecropping led many African Americans out of poverty.Landowners paid for equipment needed for harvesting.Landowners and sharecroppers equally shared harvest profits. At an advertising agency that employs 256 people, 113 employees receive 2 weeks of paid vacation each year. What is the ratio of those who receive 2 weeks of paid vacation to the total number employees? Which of the following are isotopes? Two carbon atoms, one with 6 electrons and one with only 5 electrons.Two oxygen atoms, one with 6 neutrons and one with 5 neutronsTwo nitrogen atoms, both with 7 protons and 7 neutronsAn oxygen atom with 6 neutrons and a nitrogen atom with 6 neutrons Please Help me!!!The question is: Which graph shows the solution to y > x 8? please helpppp will make brainlyist The $500 new iPhone is reduced by 31%. How much was taken off? A line is drawn on a coordinate grid by the equation y = 4. Which of the following lines would represent a row parallel to it? A. A line containing the point (6, 4) B. x = 4C. y = 0 D. x = 6 .jh ip i pk ih ih i i pi ih ih hjk i i ihh k k