Can you answer this please?

Can You Answer This Please?

Answers

Answer 1

So, the equation of the plane tangent to the surface at point P(40, 80, 12) is: z = x - (9/5)y + 4.

What is equation?

An equation is a mathematical statement that shows the equality of two expressions. It usually consists of two sides separated by an equal sign (=). The expressions on both sides of the equal sign can include numbers, variables, and mathematical operations such as addition, subtraction, multiplication, and division.

Here,

To find the equation of the plane tangent to the surface at point P(40, 80, 12), we need to first find the partial derivatives of the function z(x,y) with respect to x and y, and evaluate them at point P. Then we can use the gradient vector of the surface at point P to find the equation of the tangent plane.

Given,

r = (9u+v)i + 5u²j + (4u – v)k

We have, x = 9u + v, y = 5u², z = 4u - v

So, z(x, y) = 4u - v = 4(1/4(x-9y/5))-1/5(y-v) = (x-9y/5) - (y-v)/5

Taking partial derivatives of z with respect to x and y, we get:

∂z/∂x = 1, and ∂z/∂y = -9/5

Evaluating these at point P(40, 80, 12), we get:

∂z/∂x = 1, and ∂z/∂y = -9/5

So, the gradient vector of the surface at point P is:

grad z = (1)i - (9/5)j

Now, the tangent plane at point P is given by the equation:

z - z(P) = ∇z · (r - r(P))

where z(P) = z(40, 80) = 12, r(P) = <40, 80, 12>, and ∇z = (1)i - (9/5)j

Substituting the values, we get:

z - 12 = (1)(x - 40) - (9/5)(y - 80)

Simplifying, we get:

z = x - (9/5)y + 12 - 8

So, the equation of the plane tangent to the surface at point P(40, 80, 12) is:

z = x - (9/5)y + 4

To know more about equation,

https://brainly.com/question/649785

#SPJ1


Related Questions

Use continuity to evaluate the limit. lim x→ 8 sin(x sin(x))

Answers

The limit expression sin(x sin(x)) when evaluated by continuity does not exist

Evaluating the limit expression

The limit expression is given as

sin(x sin(x))

Where, x tends to infinity

By examining the function sin(x sin(x)), we can see that the function is a divergent series

This means that the limits diverges or the limit do not exist (DNE)

Hence, the limit expression sin(x sin(x)) where x tends to infinity does not exist

Read more about derivative at

https://brainly.com/question/5313449

#SPJ1

Final answer:

The limit lim x→ 8 sin(x sin(x)) can be evaluated using continuity. The answer is sin(8 sin(8)), which can be calculated approximately using a calculator.

Explanation:

To evaluate the limit lim x→ 8 sin(x sin(x)), we can use the fact that the composition of continuous functions is continuous. Since sin(x) is continuous for all real numbers, and x sin(x) is continuous at x = 8, we can conclude that sin(x sin(x)) is also continuous at x = 8. Therefore, the limit is equal to sin(8 sin(8)).



Using a calculator, we can calculate sin(8 sin(8)) approximately to three decimal places.

Learn more about Evaluating limit using continuity here:

https://brainly.com/question/35736176

#SPJ12

(a) Find the number of integers in the set{1,2,...,120} that are divisible by at least one of 2, 3, 5, and 7. (b) How many of the integers counted in (a) are primes? (c) Of the integers in {1, 2,..., 120} that were not counted in (a), the only one which is not a prime is 1. Explain why all of the others are primes. (d) Use the foregoing results to determine the number of primes s 120.

Answers

( A )-  We use the inclusion-exclusion principle to find the total number of integers in the set that are divisible by at least one of 2, 3, 5, or 7. The result is 104.

( B-) There are 48 primes in the set of integers that are divisible by at least one of 2, 3, 5, or 7.

(C-) n must be greater than 120, which means that all composite numbers in the set 1, 2,..., 120 that were not counted in part (a) must be divisible by at least one of 2, 3, 5, or 7.

(a) The number of integers in the set 1, 2,..., 120 that are divisible by at least one of 2, 3, 5, and 7 can be found using the principle of inclusion-exclusion. We first find the number of integers that are divisible by each individual prime factor:

Number of integers divisible by 2: 60

Number of integers divisible by 3: 40

Number of integers divisible by 5: 24

Number of integers divisible by 7: 17

Next, we find the number of integers that are divisible by each pair of prime factors:

Number of integers divisible by 2 and 3: 20

Number of integers divisible by 2 and 5: 12

Number of integers divisible by 2 and 7: 8

Number of integers divisible by 3 and 5: 8

Number of integers divisible by 3 and 7: 5

Number of integers divisible by 5 and 7: 3

We continue in this way to find the number of integers that are divisible by three prime factors, four prime factors, and so on. Finally, we use the inclusion-exclusion principle to find the total number of integers in the set that are divisible by at least one of 2, 3, 5, or 7. The result is 104.

(b) To find the number of primes in the set of integers that are divisible by at least one of 2, 3, 5, or 7, we need to exclude all composite numbers. We can do this by subtracting the number of integers that are divisible by two or more of 2, 3, 5, and 7 from the total number of integers found in part (a):

Number of integers divisible by 2 and 3: 20

Number of integers divisible by 2 and 5: 12

Number of integers divisible by 2 and 7: 8

Number of integers divisible by 3 and 5: 8

Number of integers divisible by 3 and 7: 5

Number of integers divisible by 5 and 7: 3

Number of integers divisible by 2, 3, and 5: 4

Number of integers divisible by 2, 3, and 7: 2

Number of integers divisible by 2, 5, and 7: 2

Number of integers divisible by 3, 5, and 7: 1

Therefore, there are 48 primes in the set of integers that are divisible by at least one of 2, 3, 5, or 7.

(c) Of the integers in 1, 2,..., 120 that were not counted in part (a), the only one that is not prime is 1. To see why all of the others are primes, consider any composite number n that is not divisible by 2, 3, 5, or 7. By the fundamental theorem of arithmetic, n can be written as a product of primes, none of which are 2, 3, 5, or 7. But since n is composite, it must have at least one prime factor other than 2, 3, 5, or 7. Therefore, n must be greater than 120, which means that all composite numbers in the set 1, 2,..., 120 that were not counted in part (a) must be divisible by at least one of 2, 3, 5, or 7.

(d) Using the results from parts (b) and (c), we can find the total number

Learn more about “ fundamental theorem of arithmetic “ visit here;

https://brainly.com/question/15317294

#SPJ4

how many terms of the series sigma^[infinity]_n=1 5/(2n 1)^4 are needed so that the sum is accurate to within 0.00001.[Give the smallest value of n for which this is true.]____________

Answers

At least 5 terms of the series are needed for the sum to be accurate to within 0.00001.

To find the smallest value of n for which the sum of the series σ^[infinity]_n=1 5/(2n-1)^4 is accurate to within 0.00001, follow these steps,

1. Recognize that the given series is a converging series since the terms are positive and decreasing.
2. Use the Remainder Estimation Theorem for alternating series, which states that the error in using the sum of the first n terms of a converging alternating series is less than the (n+1)th term.
3. In this case, the error should be less than 0.00001, so we have:
  5/(2(n+1)-1)^4 < 0.00001

4. Solve for n,
  (2(n+1)-1)^4 < 5/0.00001
  (2n+1)^4 < 500000
  n = 4.54 (approximately)

Since n must be an integer, the smallest value of n that satisfies the condition is n = 5. Therefore, at least 5 terms of the series are needed for the sum to be accurate to within 0.00001.

Learn more about "series": https://brainly.com/question/24643676

#SPJ11

URGENT!! Will give brainliest :)

Describe the shape of the distribution.

A. It is uniform.

B. It is bimodal.

C. It is skewed.

D. It is symmetric.

Answers

I think it’s c

http://homepage.stat.uiowa.edu/~rdecook/stat1010/notes/Section_4.2_distribution_shapes.pdf

Determine whether the nonhomogeneous system Ax = b is consistent, and if so, write the solution in the form x = xn + xp where xh is a solution of Ax = 0 and xp is a particular solution of Ax = b.

2x - 4y + 5z = 8
-7x + 14y + 4z = -28
3x - 6y + z = 12

Answers

The general solution of non-homogeneous system can be written as:

x = xh + xp = [2t + 1, t, -2s - 2] + [-1, -28, 1]

We can now write the augmented matrix of the system as:

[2    -4    5     8]

[-7   14   4   -28]

[3   -6    1      12]

We can use row reduction to determine whether the system is consistent and to find its solutions.

Performing the row reduction, we get:

[1  -2  0  2]

[0   0  1 -2]

[0   0  0 0]

From the last row of the row-reduced matrix, we can see that the system has a dependent variable, which means that there are infinitely many solutions. We can write the general solution as:

x = x1 = 2t + 1

y = y1 = t

z = z1 = -2s - 2

Here, t and s are arbitrary parameters.

To find a particular solution, we can use any method we like. One method is to use the method of undetermined coefficients. We can guess that xp is a linear combination of the columns of A, with unknown coefficients:

xp = k1[2 -7 3] + k2[-4 14 -6] + k3[5 4 1]

where k1, k2, and k3 are unknown coefficients.

We can substitute this into the system and solve for the coefficients. This gives:

k1 = -1

k2 = -2

k3 = 1

Therefore, a particular solution is:

xp = [-1 -28 1]

So the general solution can be written as:

x = xh + xp = [2t + 1, t, -2s - 2] + [-1, -28, 1]

where t and s are arbitrary parameters.

To know more about non-homogeneous system refer here:

https://brainly.com/question/13720217

#SPJ11

. (4 4 4 4 4 4 pts). suppose that, for −1 ≤ α ≤ 1, the probability density function of (y1, y2) is given by f(y1, y2) = ( [1 − α{(1 − 2e −y1 )(1 − 2e −y2 )}]e −y1−y2 , 0 ≤ y1, 0 ≤ y2, 0, elsewhere.

Answers

[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}](e -y_1-y_2 )dy_1dy_2[/tex]Therefore, [tex]f(y_1, y_2)[/tex] is a valid probability density function for −1 ≤ α ≤ 1, since it satisfies the non-negativity and normalization properties.

To determine if the given probability density function [tex]f(y_1, y_2)[/tex]is valid, we need to check that it satisfies the following two properties:

[tex]f(y_1, y_2)[/tex] is non-negative for all [tex](y_1, y_2)[/tex]

The integral of [tex]f(y_1, y_2)[/tex]over the entire [tex](y_1-y_2)[/tex] plane is equal to 1.

Non-negativity:

[tex]f(y_1, y_2)[/tex] is non-negative if it is greater than or equal to zero for all [tex]y_{2}[/tex] and [tex]y_{2}[/tex].

For 0 ≤ y1, 0 ≤ y2, we have

[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}]e -y_1-y_2 \geq 0[/tex]

since the term in the brackets is between 0 and 1 for −1 ≤ α ≤ 1.

For all other values of y1 and y2, f(y1, y2) is zero, which is non-negative.

Therefore, f(y1, y2) is non-negative for all (y1, y2).

Normalization:

The integral of f(y1, y2) over the entire y1-y2 plane is equal to 1, i.e.,

∫∫[tex]f(y_1, y_2)dy1dy^2[/tex] = 1

We split the integral into two parts:

∫∫[tex]f(y_1, y_2)dy_1dy_2[/tex] = ∫∫[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}](e -y_1-y_2 )dy_1dy_2[/tex]

The integral on the right-hand side can be evaluated using the fact that the integral of e^(-y) over the entire positive real line is equal to 1.

∫∫[tex]f(y_1, y_2)dy_1dy_2[/tex] = ∫∫[tex][1 - {(1-2e-y_1 )(1 -2e-y_2 )}](e -y_1-y_2 )dy_1dy_2[/tex]

= ∫∫[tex][e -y_1 e -y_2 -e -y_1 e -y_2 (1 −-2e -y_1 )(1 - 2e y_2 )]dy_1dy_2[/tex]

= ∫0∞e −y2 dy2 ∫0∞e −y1dy1 − α∫0∞e −y2 dy2 ∫0∞e −y1dy1 ∫0∞(1 − 2e −y1 )(1 − 2e −y2) e −y1−y2dy1dy2

= 1 − α(1 − 1)(1 − 1)∫0∞e −y2 dy2 ∫0∞e −y1dy1

= 1

To know more about probability visit:

https://brainly.com/question/30034780

#SPJ1

how do i write the inequality of this?​

Answers

Answer:

y < 3

Step-by-step explanation:

The line is y = 3

Since it is under the line,

y < 3

Since it is dotted, it will remain as y < 3

Hope this helps and be sure to mark this as brainliest! :)

Which is the quotient of 5 ÷ 1 4 ? Use the model to help. A large rectangle is divided into five equal parts. A. 1 20 B. 5 4 C. 4 5 D. 20 2 / 3 1 of 3 Answered

Answers

Based on the mentioned values and the provided informations, the quotient of 5 ÷ 1/4 is calculated to be  20 [tex]\frac{2}{3}[/tex] . So, option D is correct.

To solve this problem, we need to divide 5 by 1/4. We can do this by multiplying 5 by the reciprocal of 1/4.

The reciprocal of 1/4 is 4/1, so we can rewrite the expression as 5 x 4/1, which simplifies to 20.

Therefore, the quotient of 5 ÷ 1/4 is 20 [tex]\frac{2}{3}[/tex]

To elaborate further, 1/4 represents one part of the large rectangle, which has been divided into five equal parts. When we divide 5 by 1/4, we are essentially asking how many times 1/4 goes into 5.

Multiplying 5 by the reciprocal of 1/4, which is 4/1, is the same as dividing 5 by 1/4. This gives us a quotient of 20, which can also be expressed as a mixed number, 20 ²/₃.

Learn more about rectangle :

https://brainly.com/question/20432857

#SPJ4

The complete question is :

large rectangle is divided into five equal parts. What is the quotient of 5 ÷ 1/4? The possible answers are A) 1/20, B) 5/4, C) 4/5, and D) 20 2/3.

The singular points of the differential equation y" + y'/x+y(x-2)/x-3=0 are Select the correct answer. a. 0 b. 0, 2, 3 c. 0, 3 d. 0, 2 e. none

Answers

The singular points of the differential equation are x=0 and x=3. the correct answer is (c) 0, 3.

The singular points of a differential equation are the points where the coefficients of y'', y' or y become infinite or undefined. In this case, the given differential equation is y" + y'/x + y(x-2)/(x-3) = 0.

To find the singular points, we need to check the coefficients of y'', y', and y for any infinite or undefined values.

- The coefficient of y'' is 1, which is finite for all values of x.
- The coefficient of y' is 1/x, which is infinite at x=0.
- The coefficient of y is (x-2)/(x-3), which is undefined at x=3.

Therefore, the singular points of the differential equation are x=0 and x=3. The correct answer is (c) 0, 3.

To learn more about differential equation here:

brainly.com/question/14620493#

#SPJ11

Let random variable X have pmf f(x)=1/8 with x=-1,0,1 and u(x)=x2. Find E(u(x). 1/2 A. 1/4 OB. Oc 1/8 D. 1/16

Answers

The expected value of the function u(x) = x^2 for the given random variable X with pmf f(x) = 1/8 for x = -1, 0, 1 is option (B) 1/4.

The expected value of u(x) can be calculated using the formula

E(u(x)) = Σ u(x) × f(x) for all values of x

Given that the probability mass function (pmf) of X is f(x) = 1/8 for x = -1, 0, 1, we can calculate the expected value of u(x) as follows

E(u(x)) = (-1)^2 × f(-1) + 0^2 × f(0) + 1^2 × f(1)

= 1 × (1/8) + 0 × (1/8) + 1 × (1/8)

Do the arithmetic operation

= 2/8

Simplify the term

= 1/4

Therefore, the answer is option (B) 1/4.

Learn more about probability mass function here

brainly.com/question/30765833

#SPJ4

if 200 units sold results in $4,400 profit and 250 units sold results in $7,250 profit, write the profit function for this company.

Answers

First find the slope:
m=(7250-4400)/(250-200)
m=2850/50
m=57
Then we find the y intercept
4400=11400+b
b=-7000
Therefore the profit is 57x-7000
x is the number of units sold

A sprinkler set in the middle of a lawn sprays in a circlular pattern the area of the lawn that gets sprayed by the sprinkler can be described by the equation (x-2)y+(y-5)2=169

Answers

The equation (x-2)y+(y-5)²=169 describes the circular pattern of a sprinkler set in the middle of a lawn.

To see why, we can rewrite the equation in standard form for a circle:

(x-2)y+(y-5)²=169

xy - 2y + y² - 10y + 25 = 169

x(y-2) + y² - 10y - 144 = 0

(x-(-2))(y-5)² = 144

(x+2)(y-5)² = 144

This is the equation of a circle with center (-2, 5) and radius 12. Therefore, the area of the lawn that gets sprayed by the sprinkler is a circle with center (-2, 5) and radius 12.

maximize production: p = k2/5l3/5 budget constraint: b = 4k 5l = 100

Answers

The maximum production is 3.334 at the point (k, l) is (4.022, 5.029)

How to maximize production?

To maximize production, we need to maximize the production function:

[tex]p = k^{(2/5)} * l^{(3/5)}[/tex]

subject to the budget constraint:

b = 4k + 5l = 100

We can use the method of Lagrange multipliers to solve this problem. The Lagrangian function is:

[tex]L = k^{(2/5)} * l^{(3/5)} + \lambda(100 - 4k - 5l)[/tex]

where λ is the Lagrange multiplier.

To find the critical points, we need to take the partial derivatives of L with respect to k, l, and λ, and set them equal to zero:

∂L/∂k = [tex]2/5 * k^{(-3/5)} * l^{(3/5)} - 4\lambda[/tex] = 0

∂L/∂l =[tex]3/5 * k^{(2/5)} * l^{(-2/5)} - 5\lambda[/tex] = 0

∂L/∂λ = 100 - 4k - 5l = 0

Solving these equations, we get:

k = [tex](25/6)^{(5/7)}[/tex] ≈ 4.022

l = [tex](20/3)^{(5/7)}[/tex] ≈ 5.029

λ =[tex](2/5) * (25/6)^{(-2/7)} * (20/3)^{(-3/7)}[/tex]≈ 0.327

Therefore, the maximum production is:

p =[tex]k^{(2/5)} * l^{(3/5)}[/tex] ≈ 3.334

at the point (k, l) ≈ (4.022, 5.029), subject to the budget constraint 4k + 5l = 100.

Learn more about maximize production

brainly.com/question/28963112

#SPJ11

Find and calculate the value of c such that ∑ [infinity] n=0 e^nc = 3

Answers

The value of c is approximately -0.4055.

To find the value of c such that the sum ∑ (from n=0 to infinity) of e(nc) equals 3, we recognize this as a geometric series. For a geometric series to converge, the common ratio (r) must be between -1 and 1. In this case, r = ec.

The sum of an infinite geometric series is given by the formula S = a / (1 - r), where a is the first term and r is the common ratio.

In this problem, a = e(0c) = 1, and we want the sum S = 3. Plugging in the values:

3 = 1 / (1 - ec)

Now, solve for c:

1 - ec = 1/3
ec = 2/3

Take the natural logarithm (ln) of both sides:

ln(ec) = ln(2/3)
c = ln(2/3)

Know more about geometric series here:

https://brainly.com/question/4617980

#SPJ11

<
Archimedes drained the water in his tub.
The amount of water left in the tub (in liters) as a function of time (in
minutes) is graphed.
Water (liters)
360-
320-
280-
240-
200-
160-
120+
80+
40-
3
2
Time (minutes)

Answers

The rate at which water is draining is 72 liters per second.

What is the slope of a graph?

The slope of a graph is a measure of how steep the graph is, or how much the dependent variable changes in relation to the independent variable.

The rate at which water is draining is equal to the slope of the graph;

Mathematically, the slope is defined as the ratio of the change in the vertical or y-axis value (the dependent variable) to the change in the horizontal or x-axis value (the independent variable) between two points on the graph. It represents the rate of change or the steepness of the graph.

The slope is usually denoted by the letter "m" and is calculated using the following formula:

Slope (m) = (change in y-axis value)/(change in x-axis value)

rate = slope = (0 L - 360 L )/( 5 s - 0 s )

rate = -360 L / 5 s

rate = -72 L/s

Learn more about slope here: https://brainly.com/question/3493733

#SPJ1

The National Association of Colleges and Employers (NACE) Spring Salary Survey shows that the current class of college graduates received an average starting-salary offer of $48,127. Your institution collected an SRS (n = 300) of its recent graduates and obtained a 95% confidence interval of ($46,382, $48,008). What can we conclude about the difference between the average starting salary of recent graduates at your institution and the overall NACE average? Write a short summary.

Answers

Based on the information provided, we can conclude that the average starting salary of recent graduates at the institution is likely not significantly different from the overall NACE average of $48,127.

This is because the 95% confidence interval obtained from the institution's SRS includes the NACE average.

However, it is important to note that this conclusion is limited to the specific sample size and methodology used by the institution for their survey.

The National Association of Colleges and Employers (NACE) Spring Salary Survey indicates an average starting-salary offer of $48,127 for recent college graduates.

In comparison, your institution conducted a survey using a Simple Random Sample (SRS) of 300 graduates and calculated a 95% confidence interval of ($46,382, $48,008) for their average starting salary.

In summary, the confidence interval suggests that the average starting salary of recent graduates at your institution is likely to fall between $46,382 and $48,008.

Since the NACE average of $48,127 is not within this interval, it can be concluded that there is a difference between the average starting salary at your institution and the overall NACE average, with your institution's average being slightly lower.

Visit here to learn more about Sample Size:

brainly.com/question/30509642

#SPJ11

A rectangular red sticker is 2 millimeters tall and 8 millimeters wide. What is its perimeter?

Answers

The perimeter is 20 Millimeters you get this by adding all the sides.
The answer would be 20 millimeters

x=tan^2(theta)
y=sec(theta)
-pi/2 a.)Eliminate the perameter to find a cartesian equation of thecurve.
b.)sketch the curve and indicate with an arrow the direction inwhich the curve is traced as the parameter increases.

Answers

The perameter to find a cartesian equation of the curve is y^2 = 1 + x.

We are given that;

x=tan^2(theta)

y=sec(theta)

Now,

We need to solve for t in one equation and substitute it into the other equation. In this case, we have:

x = tan^2(t) y = sec(t)

Solving for t in the first equation, we get:

t = arctan(sqrt(x))

Substituting this into the second equation, we get:

y = sec(arctan(sqrt(x)))

Using the identity sec^2(t) = 1 + tan^2(t),

we can simplify this equation as:

y^2 = 1 + x

Therefore, by the given equation the answer will be y^2 = 1 + x

Learn more about equations here;

https://brainly.com/question/25180086

#SPJ1

Some integers are not irrational numbers.


Some whole numbers are irrational numbers.


Some integers are not whole numbers.


All whole numbers are rational numbers.

Answers

Answer:

All whole numbers are rational numbers.

Step-by-step explanation:

Assume the random variable x is normally distributed with mean μ 82 and standard deviation σ= 5, Find the indicated probability P(x< 80) Plxe 80)= [ (Round to four decimal places as needed.)

Answers

The probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5 is approximately 0.3446 when rounded to four decimal places.

Standard deviation is: It is a measure of how spread out numbers are. It is the square root of the Variance, and the Variance is the average of the squared differences from the Mean.

To find the probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5,

To find this probability, follow these steps:

1. Calculate the z-score for x = 80. The z-score is given by the formula: z = (x - μ) / σ
2. Look up the z-score in a standard normal distribution table (also known as a z-table) to find the corresponding probability.

Step 1: Calculate the z-score
z = (80 - 82) / 5 = -2 / 5 = -0.4

Step 2: Look up the z-score in the z-table
Looking up a z-score of -0.4 in a z-table, we find a corresponding probability of approximately 0.3446.

Learn more about the standard deviation: https://brainly.com/question/475676

#SPJ11

The probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5 is approximately 0.3446 when rounded to four decimal places.

Standard deviation is: It is a measure of how spread out numbers are. It is the square root of the Variance, and the Variance is the average of the squared differences from the Mean.

To find the probability P(x < 80) for a normally distributed random variable x with a mean μ = 82 and a standard deviation σ = 5,

To find this probability, follow these steps:

1. Calculate the z-score for x = 80. The z-score is given by the formula: z = (x - μ) / σ
2. Look up the z-score in a standard normal distribution table (also known as a z-table) to find the corresponding probability.

Step 1: Calculate the z-score
z = (80 - 82) / 5 = -2 / 5 = -0.4

Step 2: Look up the z-score in the z-table
Looking up a z-score of -0.4 in a z-table, we find a corresponding probability of approximately 0.3446.

Learn more about the standard deviation: https://brainly.com/question/475676

#SPJ11

give the mclaurin series for f ( x ) = cos ( x 2 ) .

Answers

Sure, I can help you with that.

The Maclaurin series for f(x) = cos(x^2) is:

f(x) = 1 - x^4/2! + x^8/4! - x^12/6! + ...

This can be derived from the Maclaurin series of cos(x) using the chain rule and the fact that the derivative of x^2 is 2x.

Select the correct answer. Which graph represents the solution to this system of inequalities? y < -x − 3 y > 2x – 4

Answers

Answer I attached you a graph.
If you graph your inequality this is what it looks like.
Since you didn’t give graphs to chose from you can compare this one to your choices.

a random sample of n = 9 scores is selected from a normal population with a mean of μ = 100. after a treatment is administered to the individuals in the sample, the sample mean is found to be M=106.
a. If the population standard deviation is σ=10, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α=.05.
b. Repeat part a, assuming a one-tailed test with α=.05.
c. If the population standard deviation is σ, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α
d. Repeat part c, assuming a one-tailed test with α.
e. Comparing your answers for parts a, b, c, and d, explain how the magnitude of the standard deviation and the number of tails in the hypothesis influence the outcome of a hypothesis test.

Answers

(a) The sample mean is sufficient cannot conclude that the treatment has a significant effect.

(b) A one-tailed test with α = 0.05, is conclude that the treatment has a significant effect.

(c) A two-tailed test, We fail to reject the null hypothesis.

(d) one-tailed test with α we reject the null hypothesis

(e) A one-tailed test has a greater probability of rejecting the null hypothesis than a two-tailed test.

Can we to determine the sample mean is sufficient to conclude that the treatment?

a. To determine if the sample mean is sufficient to conclude that the treatment has a significant effect, we need to perform a two-tailed hypothesis test:

Null hypothesis: μ = 100

Alternative hypothesis: μ ≠ 100

The level of significance is α = 0.05. Since the population standard deviation σ is known, we can use a z-test:

z = (M - μ) / (σ / √n) = (106 - 100) / (10 / √9) = 1.8

The critical values for a two-tailed test with α = 0.05 are ±1.96. Since the calculated z-value of 1.8 does not fall in the rejection region, we fail to reject the null hypothesis. Therefore, we cannot conclude that the treatment has a significant effect.

Can a one-tailed test with α = 0.05, conclude that the treatment has a significant effect.?

b. To perform a one-tailed test with α = 0.05, we need to change the alternative hypothesis:

Null hypothesis: μ = 100

Alternative hypothesis: μ > 100

The critical value for a one-tailed test with α = 0.05 is 1.645. Since the calculated z-value of 1.8 is greater than the critical value, we reject the null hypothesis. Therefore, we can conclude that the treatment has a significant effect.

Can we determine sample mean sufficient has a significant effect two-tailed test with α?

c. If the population standard deviation is unknown, we need to use a t-test instead of a z-test. The null and alternative hypotheses are the same as in part a:

Null hypothesis: μ = 100

Alternative hypothesis: μ ≠ 100

The sample standard deviation can be used as an estimate of the population standard deviation:

t = (M - μ) / (s / √n) = (106 - 100) / (s / √9)

Since σ is unknown, we cannot use the critical values for a z-test. Instead, we need to use the t-distribution with n-1 degrees of freedom. For a two-tailed test with α = 0.05 and 8 degrees of freedom, the critical values are ±2.306. If the calculated t-value falls within the rejection region, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

Can we determine sample mean sufficient has a significant effect one-tailed test with α?

d. To perform a one-tailed test with α = 0.05, we need to change the alternative hypothesis:

Null hypothesis: μ = 100

Alternative hypothesis: μ > 100

The critical value for a one-tailed test with α = 0.05 and 8 degrees of freedom is 1.859. If the calculated t-value is greater than the critical value, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

How the magnitude of standard deviation and number of tails of a hypothesis test?

e. The magnitude of the standard deviation and the number of tails in the hypothesis test can both influence the outcome of a hypothesis test. A larger standard deviation will result in a larger standard error, which in turn will decrease the calculated t- or z-value and make it less likely to reject the null hypothesis.

The number of tails in the hypothesis also affects the outcome.  A one-tailed test has a greater probability of rejecting the null hypothesis than a two-tailed test, given the same level of significance and sample mean. However, a one-tailed test can be more susceptible to type I errors if the alternative hypothesis is not well-supported by the data.

Learn more about hypothesis test

brainly.com/question/30588452

#SPJ11

according to the total probability rule, p(a) equals the sum of p(a ∩ b) and p(a ∩ bc), and is considered conditional on two mutually exclusive and exhaustive events independent of an experiment.

Answers

It is important to remember that the total probability rule refers to the sum of probabilities of intersections between A and two mutually exclusive and exhaustive events (B and BC), while the concept of independence relates to how the occurrence of one event affects the probability of another.



The total probability rule states that if we have two mutually exclusive and exhaustive events B and BC (B complement), then the probability of event A can be calculated as the sum of the probabilities of the intersections of A with both B and BC. Mathematically, this can be expressed as:

P(A) = P(A ∩ B) + P(A ∩ BC)

Now, let's discuss the term "independent". Two events are considered independent if the occurrence of one event does not affect the probability of the other event. In this case, if events A and B are independent, we can say:

P(A ∩ B) = P(A) * P(B)
P(A ∩ BC) = P(A) * P(BC)

However, the total probability rule is not dependent on whether events A and B are independent or not. It is important to remember that the total probability rule refers to the sum of probabilities of intersections between A and two mutually exclusive and exhaustive events (B and BC), while the concept of independence relates to how the occurrence of one event affects the probability of another.

to learn more about probability click here:

https://brainly.com/question/15124899

#SPJ11

Evaluate the geometric series or state that it diverges Infinity sigma n = 0 e -4n = Select the correct choice below and, if necessary, fill in the A. Infinity sigma n = 0 e -4n = B. The series diverges.

Answers

The correct choice is:
A. Infinity sigma n = 0 e^(-4n) = 1 / (1 - e^(-4))


To evaluate the given geometric series or state that it diverges, we need to first identify the general form of a geometric series:

Σ (from n=0 to infinity) ar^n

where 'a' is the first term and 'r' is the common ratio between consecutive terms.

In the given series, Σ (from n=0 to infinity) e^(-4n), we can identify that:

a = e^(0) = 1
r = e^(-4)

For a geometric series to converge, the common ratio 'r' must be between -1 and 1 (excluding -1 and 1):

-1 < r < 1

In this case:

-1 < e^(-4) < 1

Since the common ratio 'r' is between -1 and 1, the series converges, and we can use the formula to find the sum of an infinite geometric series:

S = a / (1 - r)

Substitute the values of 'a' and 'r':

S = 1 / (1 - e^(-4))

So, the correct choice is:

A. Infinity sigma n = 0 e^(-4n) = 1 / (1 - e^(-4))

Visit here to learn more about geometric series:

brainly.com/question/4617980

#SPJ11

what is the value of x after the following statements execute? int x; x = (5 <= 3 & 'a' < 'f') ? 3 : 4 group of answer choices a.4 b.2 c.5 d.3

Answers

The value of x after the following statements execute will be 4.

In the given code, there are two statements. First, an integer variable x is declared without being initialized, which means it will have an unspecified value. Then, x is assigned a value based on the result of a conditional (ternary) operator.

The conditional operator has the following syntax: (condition) ? value_if_true : value_if_false. It evaluates the condition, and if the condition is true, it returns value_if_true, otherwise it returns value_if_false.

In this case, the condition being evaluated is (5 <= 3 & 'a' < 'f'). Let's break it down:

5 <= 3 is a comparison between 5 and 3 using the less than or equal to operator. This evaluates to false, because 5 is not less than or equal to 3.

'a' < 'f' is a comparison between the ASCII values of 'a' and 'f'. In ASCII, the value of 'a' is less than the value of 'f'. So this comparison evaluates to true.

& is the bitwise AND operator, which performs a bitwise AND operation on the individual bits of the operands. In this case, it performs a bitwise AND operation on the result of the two previous comparisons. However, since the result of the first comparison is false (0), the bitwise AND operation will also result in false (0).

So, the overall result of the condition (5 <= 3 & 'a' < 'f') is false (0), because the first comparison is false. As a result, the value_if_false branch of the conditional operator is executed, which is 4. Therefore, the value of x will be assigned as 4 after the statements execute.

To learn more about integer, refer below:

https://brainly.com/question/15276410

#SPJ11

A town has a population of 5000 and grows 3.5% every year.to the nearest year how long will it be until the population will reach 6300

Answers

By  exponential growth , In light of this, it will take roughly 12 years for the population to reach 6300.

How does exponential growth work?

A process called exponential growth sees a rise in quantity over time. It happens when a quantity's derivative, or instantaneous rate of change with respect to time, is proportionate to the amount itself1. A quantity that is increasing exponentially is referred to as a function, and the exponent, which stands in for time, is the variable that represents time. (in contrast to other types of growth, such as quadratic growth)¹. If the proportionality constant is negative, exponential decline happens instead

We may utilise the exponential growth formula to resolve this issue:

A = P(1 + r)ⁿ

where: A = total sum

P = starting sum

Annual Growth Rate is r.

N equals how many years.

We are aware that P is the initial population and A is the end population, both of which are 5000. The yearly growth rate, r, is 3.5%, as well. Solving for n using these values as inputs results in:

6300 = 5000(1 + 0.035)ⁿ

If we simplify this equation, we get:

1.26 = 1.035ⁿ

When you take the natural logarithm of both sides, you get:

ln(1.26) =  ln(1.035)

To find n, solve for:

12 yearsⁿ = ln(1.26) / ln(1.035).

In light of this, it will take roughly 12 years for the population to reach 6300.

To know more about exponential growth visit:

brainly.com/question/11487261

#SPJ1

A 2pi -periodic signal x(t) is specified over one period as x(t) = (1/A t 0 lessthanorequalto t < A 1 A lessthanorequalto t < pi 0 pi lessthanorequalto t < 2pi Sketch x(t) over two periods from t = 0 to 4pi. Show that the exponential Fourier series coefficients D_pi for this series are given by x(t) = {2 pi - A/4 pi n = 0 1/2 pi n (e^-j A n - 1/An) otherwise

Answers

The exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

To sketch [tex]$x(t)$[/tex] over two periods from [tex]$t=0$[/tex] to [tex]$4 \mathrm{pi}$[/tex], we first need to plot one period of [tex]$x(t)$[/tex], which is given as:

[tex]$$\begin{aligned}& \mathrm{x}(\mathrm{t})=(1 / \mathrm{A}) \mathrm{t} 0 < =\mathrm{t} < \mathrm{A} \\& =\mathrm{A} \mathrm{A} < =\mathrm{t} < \mathrm{pi} \\& =0 \mathrm{pi} < =\mathrm{t} < 2 \mathrm{pi}\end{aligned}$$[/tex]

The plot of one period of [tex]x(t)[/tex] is shown below:

  |          /\

  |         /  \

A |        /    \

  |       /      \

  |      /        \

  |_____/          \_____

     0     A      pi    2pi

To sketch [tex]x(t)[/tex] over two periods, we need to repeat this pattern twice. Since [tex]x(t)[/tex] is a 2pi-periodic signal, we only need to sketch one period to represent the entire signal over any number of periods. Therefore, we can simply repeat the above plot twice to obtain the sketch of [tex]x(t)[/tex] over two periods from [tex]t = 0[/tex] to [tex]4pi[/tex], as shown below:

  |          /\          /\

  |         /  \        /  \

A |        /    \      /    \

  |       /      \    /      \

  |_____/        \__/        \_____

     0     A      pi         2pi  3pi

To find the exponential Fourier series coefficients [tex]D_n[/tex], we can use the formula:

[tex]$D_{\ldots} n=(1 / T) * \int[T] x(t) e^{\wedge}(-j n w 0 t) d t$[/tex]

where T is the period of [tex]$x(t)$[/tex], w0 is the fundamental angular frequency, and n is an integer. Since [tex]$x(t)$[/tex] is a 2pi-periodic signal, we have [tex]$T=2 p i$[/tex] and [tex]$\mathrm{wO}=2 \mathrm{pi} / \mathrm{T}=1$[/tex].

The Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$n=0,+/-1,+/-2, \ldots$[/tex] are given by:

[tex]$D_{\ldots} n=(1 / 2 p i) * \int[2 \mathrm{pi}] x(\mathrm{t}) \mathrm{e}^{\wedge}(-j n t) d t$[/tex]

For [tex]$\mathrm{n}=0$[/tex], we have:

[tex]{ D_0 }$[/tex][tex]=(1 / 2 p i)^* \int[2 \mathrm{pi}] \times(t) d t$[/tex]

[tex]=(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) * \int[\mathrm{A}] \mathrm{t} d \mathrm{dt}+\mathrm{A}^* \int[\mathrm{pi}] \mathrm{dt}+0\right] \\& =(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) *\left(\mathrm{~A}^{\wedge} 2 / 2\right)+\mathrm{A}(\mathrm{pi}-\mathrm{A})\right] \\[/tex]

[tex]& =(1 / 2 \mathrm{pi}) *[(\mathrm{~A} / 2)+\mathrm{A}(\mathrm{pi}-\mathrm{A})] \\& =(\mathrm{pi}-\mathrm{A} / 2 \mathrm{pi})\end{aligned}$$[/tex]

For [tex]$n=+/-1,+/-2, \ldots$[/tex], we have:

[tex]$$\begin{aligned}& D_n n=(1 / 2 p i)^* \int[2 p i] x(t) e^{\wedge}(-j n t) d t \\& =(1 / 2 p i)^*\left[(1 / A) * \int[A] t e^{\wedge}(-j n t) d t+A^* \int[\text { pi }] e^{\wedge}(-j n t) d t+0\right] \\& =(1 / 2 \text { pi })^*\left[(1 / A)^*\left((-1)^{\wedge} n-1\right)+A^*\left(1-(-1)^{\wedge} n\right) /(j n)\right] \\& =(-1)^{\wedge} n /(n A)\end{aligned}$$[/tex]

Therefore, the exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]$\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.$[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

Using the formula for the inverse Fourier series, we can write the

To learn more about fundamental visit:

https://brainly.com/question/2224584

#SPJ11

The exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

To sketch [tex]$x(t)$[/tex] over two periods from [tex]$t=0$[/tex] to [tex]$4 \mathrm{pi}$[/tex], we first need to plot one period of [tex]$x(t)$[/tex], which is given as:

[tex]$$\begin{aligned}& \mathrm{x}(\mathrm{t})=(1 / \mathrm{A}) \mathrm{t} 0 < =\mathrm{t} < \mathrm{A} \\& =\mathrm{A} \mathrm{A} < =\mathrm{t} < \mathrm{pi} \\& =0 \mathrm{pi} < =\mathrm{t} < 2 \mathrm{pi}\end{aligned}$$[/tex]

The plot of one period of [tex]x(t)[/tex] is shown below:

  |          /\

  |         /  \

A |        /    \

  |       /      \

  |      /        \

  |_____/          \_____

     0     A      pi    2pi

To sketch [tex]x(t)[/tex] over two periods, we need to repeat this pattern twice. Since [tex]x(t)[/tex] is a 2pi-periodic signal, we only need to sketch one period to represent the entire signal over any number of periods. Therefore, we can simply repeat the above plot twice to obtain the sketch of [tex]x(t)[/tex] over two periods from [tex]t = 0[/tex] to [tex]4pi[/tex], as shown below:

  |          /\          /\

  |         /  \        /  \

A |        /    \      /    \

  |       /      \    /      \

  |_____/        \__/        \_____

     0     A      pi         2pi  3pi

To find the exponential Fourier series coefficients [tex]D_n[/tex], we can use the formula:

[tex]$D_{\ldots} n=(1 / T) * \int[T] x(t) e^{\wedge}(-j n w 0 t) d t$[/tex]

where T is the period of [tex]$x(t)$[/tex], w0 is the fundamental angular frequency, and n is an integer. Since [tex]$x(t)$[/tex] is a 2pi-periodic signal, we have [tex]$T=2 p i$[/tex] and [tex]$\mathrm{wO}=2 \mathrm{pi} / \mathrm{T}=1$[/tex].

The Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$n=0,+/-1,+/-2, \ldots$[/tex] are given by:

[tex]$D_{\ldots} n=(1 / 2 p i) * \int[2 \mathrm{pi}] x(\mathrm{t}) \mathrm{e}^{\wedge}(-j n t) d t$[/tex]

For [tex]$\mathrm{n}=0$[/tex], we have:

[tex]{ D_0 }$[/tex][tex]=(1 / 2 p i)^* \int[2 \mathrm{pi}] \times(t) d t$[/tex]

[tex]=(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) * \int[\mathrm{A}] \mathrm{t} d \mathrm{dt}+\mathrm{A}^* \int[\mathrm{pi}] \mathrm{dt}+0\right] \\& =(1 / 2 \mathrm{pi}) *\left[(1 / \mathrm{A}) *\left(\mathrm{~A}^{\wedge} 2 / 2\right)+\mathrm{A}(\mathrm{pi}-\mathrm{A})\right] \\[/tex]

[tex]& =(1 / 2 \mathrm{pi}) *[(\mathrm{~A} / 2)+\mathrm{A}(\mathrm{pi}-\mathrm{A})] \\& =(\mathrm{pi}-\mathrm{A} / 2 \mathrm{pi})\end{aligned}$$[/tex]

For [tex]$n=+/-1,+/-2, \ldots$[/tex], we have:

[tex]$$\begin{aligned}& D_n n=(1 / 2 p i)^* \int[2 p i] x(t) e^{\wedge}(-j n t) d t \\& =(1 / 2 p i)^*\left[(1 / A) * \int[A] t e^{\wedge}(-j n t) d t+A^* \int[\text { pi }] e^{\wedge}(-j n t) d t+0\right] \\& =(1 / 2 \text { pi })^*\left[(1 / A)^*\left((-1)^{\wedge} n-1\right)+A^*\left(1-(-1)^{\wedge} n\right) /(j n)\right] \\& =(-1)^{\wedge} n /(n A)\end{aligned}$$[/tex]

Therefore, the exponential Fourier series coefficients [tex]$D_n n$[/tex] for [tex]$x(t)$[/tex] are:

[tex]$D_n n=\{(p i-A) / 2 p i$[/tex] for [tex]$n=0$[/tex]

[tex]$\left\{(-1)^{\wedge} n /(n \mathrm{~A})\right.$[/tex] for [tex]$n=+/-1,+/-2, \ldots$[/tex]

Using the formula for the inverse Fourier series, we can write the

To learn more about fundamental visit:

https://brainly.com/question/2224584

#SPJ11

I need help with this. I got B, but I feel like my method is faulty.

Answers

Answer:

  B.  6/7

Step-by-step explanation:

You want the radius of each of two circles tangent to each other and the extended segments of ∆ABC.

Proportion

Referring to the attached figure, we see that ∆EGF is similar to ∆ABC. This means EG/EF = AB/AC = 5/4.

∆AGH is also similar to ∆ABC, so we also have the proportion ...

  GH/AH = BC/AC = 3/4

In terms of radius r, GH = (3+5/4)r, and AH = r +4:

  (17/4)r / (r +4) = 3/4

  17r = 3(r +4) . . . . . . . . multiply by 4(r+4)

  14r = 12 . . . . . . . . subtract 3r

  r = 6/7 . . . . . . divide by 14, simplify

The radius of each circle is 6/7 units.

a) find the rational zeros and then the other zeros of the polynomial function f(x)=x3-111x+110; that is, solve f(x)=0
b)factor f(x) into linear factors

Answers

the complete set of zeros of f(x) is:

x = 1, x = -11, and x = 10

How to find the rational zeros?

To find the reasonable zeros of the polynomial capability[tex]f(x) = x^3 - 111x + 110[/tex], we can utilize the Normal Root Hypothesis.

Any rational zero of a polynomial function is, in accordance with this theorem, of the form p/q, where p is a factor of the constant term (in this case, 110) and q is a factor of the leading coefficient (which is 1).

So, the possible rational zeros of f(x) are:

p/q = ±1, ±2, ±5, ±10, ±11, ±22, ±55, ±110

We can now use synthetic division or long division to check which of these possible rational zeros actually are zeros of f(x). We start with p/q :

So, x - 1 is a factor of f(x), and we can write:

[tex]f(x) = (x - 1)(x^2 + x - 110)[/tex]

To find the other zeros of f(x), we need to solve the quadratic equation x^2 + x - 110 = 0. We can use the quadratic formula:

[tex]x = (-1 ± \sqrt{ (1^2 - 4(1)(-110)))} / 2(1)[/tex]

[tex]x = (-1 ± \sqrt{441}) / 2[/tex]

x = (-1 ± 21) / 2

So, the other two zeros of f(x) are:

x = -11 and x = 10

Therefore, the complete set of zeros of f(x) is:

x = 1, x = -11, and x = 10

know more about polynomial function visit :

https://brainly.com/question/12976257

#SPJ1

Other Questions
David runs a printing and typing service business. The rate for services is K32 per hour plus a K31.50one-time charge. The total cost to a customer depends on the number of hours it takes to complete thejob. Find the equation that expresses the total cost in terms of the number of hours required to completethe job 3. (p. 103, Table 1) Brisk walking would most likely be at what MET level? A. 2B. 4C. 7D. 10 URGENT!! ILL GIVEBRAINLIEST! AND 100 POINTS Can someone please help with this English language arts question? ype: ping 127.0.0.1 The 127.0.0.0 network is reserved for loopback testing. If the ping is successful, then TCP/IP is working properly in your computer. Question 5: Was the ping successful? Yes/No Question 6: Will the above command be successful if you disconnect your computer from the network (e.g. disconnect network cable or disconnect from Wi-Fi)? Try it and justify your answer. Question 7: Will the above command be successful if you remove the network adapter from your computer? Make a Reflection Paper about the Dangers of Too much Self-Love Calculate the total change in aggregate spending if investment increases by $150 billion and the marginal propensity to consume is 0.8.Aggregate demand ___ by $_____ billion. The register file contains: (select the best answer) A. The PC Counter B. All 32 general purpose registers C. The currently active registers D. The data to be written into a register Use implicit differentiation to find z/x and z/y.x^(2) + 2y^(2)+ 3z^(2) = 1 Complete each statement by using the appropriate word or phrase from the list. Each label may be used more than once. The countercurrent multiplier is a phenomenon that occurs in the __________Countercurrent exchange occurs as both solutes and water move freely in and out urea of the ___________ The increase in osmolarity, as filtrate moves down the descending limb, is due to _______________ moving out of the tubule ascending limb The decrease in osmolarity of the filtrate, as it moves up the ascending Timb, is due ____________moving out of the tubule solutes The osmolarity of the bitrate is virtually the same at the entrance and exit of the________The osmolarity of the filtrate is approximately 100 mOsmL at the end of the____________ and around 1.200 mm/L at the end of the___________ descending tim The recycling ________________of out of the collecting duct and back into the nephron loop contributes significantly to the medulary osmotic gradient. The company budgeted for production of 2,800 units in September, but actual production was 2,700 units. The company used 5,640 liters of direct material and 1,700 direct labor-hours to produce this output. The company purchased 6,000 liters of the direct material at $7.40 per liter. The actual direct labor rate was $26.10 per hour and the actual variable overhead rate was $2.00 per hour.The company applies variable overhead on the basis of direct labor-hours. The direct materials purchases variance is computed when the materials are purchased.The variable overhead rate variance for September is:$340 F$324 U$340 U$324 F True or False? correctly structured html can rank well without quality content. According to the passage, which of these happens when Gretchen and Aunt Jasmine reach thesummit?In the story, "Word by Word" the _______ current is determined by the manufacturer of the hermetic refrigerant motor compressor by testing at rated refrigerant pressure, temperature conditions, and voltage. Explain why the trade between Africa and the American colonies expanded as the colonies began to grow and advance On a particular day during the tourist season a rent-a-car company must supply cars to four destinations according to the following schedule: Destination Cars required A 2B 3C 5D 7The company has three branches from which the cars may be supplied. On the day in question, the inventory status of each of the branches was as follows: Branch Cars available1 62 13 10The distances between branches and destinations are given by the following table: Destination Branch A B C D 1 7 11 3 2 2 1 6 0 1 3 9 15 8 5Plan the day's activity such that supply requirements are met at a minimum cost (assumed proportional to car-miles travelled). Mltiplos de 17 hasta el 1000 Let n 1, x be a real number, and x 1.Prove the following statement using mathematical induction . ( 1 + x )n 1 + nx A dodecahedral die (one with 12 sides numbered from 1 to 12) is tossed once.A dodecahedral die. Only the front half, which is composed of 6 sides, is visible. In the center, a pentagonal side labeled 12 connects along its 5 edges to 5 other pentagonal sides, labeled 3, 8, 7, 9, and 11, respectively. Find the following probability. (Enter your probability as a fraction.)The number on the upward face is not 1. let ax = a2x-1, a1 = 2 find a3 =