We've established that heights of 10-year-old boys vary
according to a Normal distribution with mu = 138cm and sigma = 7cm
What proportion is between 152 and 124 cm ?

Answers

Answer 1

The proportion of values between 152 and 124 cm is 0.8996 or 89.96%.

Proportion between 152 and 124 cm according to a normal distribution with mu = 138cm and sigma = 7cm is 0.8996.

According to the given question, we know that the mean is μ = 138 cm, standard deviation is σ = 7 cm.

We have to find the proportion that is between 152 and 124 cm.

To solve the problem, first we have to find the z-scores for 152 and 124 cm.

We can calculate the z-scores as follows:Z-score for 152 cm is given by:z152​=(152−138)7=2z_{152}=\frac{(152-138)}{7}=2z152​=(152−138)7=2Z-score for 124 cm is given by:z124​=(124−138)7=−2z_{124}=\frac{(124-138)}{7}=-2z124​=(124−138)7=−2

We can use a z-table or calculator to find the proportion of values between these two z-scores.

The area under the standard normal curve between z = -2 and z = 2 is approximately 0.8996.

Therefore, the proportion of values between 152 and 124 cm is 0.8996 or 89.96%.

Know more about normal distribution here:

https://brainly.com/question/15103234

#SPJ11


Related Questions

A donut has a diameter of 7 in. What is the radius?

Answers

Answer:

The radius is 3.5 inches I think.

Step-by-step explanation:

Hope this helped Mark BRAINLIEST!!!

Answer:

3.5

Step-by-step explanation:

You would simply divide 7 inches by 2 because the radius is one-half the measure of the diameter.

The following contingency table gives the results of a sample survey of South African male and female respondents with regard to their preferred fastfood outlet: PREFERRED FAST FOOD OUTLET Burger King McDonalds TOTAL 50 No. of Males No. of Females 20 130 100 120 TOTAL 270 150 110 140 400 0.1.1.1 What is the probablyf randomly selecting a respondent who is male and prefer Burger 01.12 What is the probably selecting a female respondent, even that the preferred fastfood out? 0.1.1.3 What is the probability of selecting a respondent who is female or who prefers McDonalds? 12) (2) Events X and Yare such that PC) = 0.20 and PCXUY) = 0.55. Given that Xand Yare independent and non-mutually taclusive, determine P(Y). Give your final answer as a percentage to two decimal places (5) 13 (2) 2.1.3.1 Helen is the manager of a Finance Department. She has fifteen (15) members of stuff working for her. She has to choose five (5) members of her staff for a research team. How many different teams can she select from the fifteen members of staff 2.1.22 There are twelve (12) teams in a basketball league. What is the probability of correctly predicting the top three teams at the end of the 3) season in the correct order?

Answers

Q1.1.1 The probability of randomly selecting a male respondent from the sample is 0.4. Q.1.1.2 The probability of randomly selecting a respondent who is female and prefers HP is 0.275. Q.1.1.3 The probability of selecting a male respondent, given that the preferred brand is Lenovo is 0.4545. Q.1.1.4 The probability of selecting a respondent who is male or who prefers HP is 0.575. Q.1.1.5 The probability of selecting a respondent who does not prefer Lenovo is 0.725.

Q.1.1.1 What is the probability of randomly selecting a male respondent from the sample?

The probability of randomly selecting a male respondent is given by the number of male respondents divided by the total number of respondents:

Probability = No. of Males / Total = 160 / 400 = 0.4

Q.1.1.2 What is the probability of randomly selecting a respondent who is female and prefers HP?

The probability of randomly selecting a respondent who is female and prefers HP is given by the number of females who prefer HP divided by the total number of respondents:

Probability = No. of Females who prefer HP / Total = 110 / 400 = 0.275

Q.1.1.3 What is the probability of selecting a male respondent, given that the preferred brand is Lenovo?

The probability of selecting a male respondent, given that the preferred brand is Lenovo, is given by the number of males who prefer Lenovo divided by the total number of respondents who prefer Lenovo:

Probability = No. of Males who prefer Lenovo / Total No. of respondents who prefer Lenovo = 50 / 110 = 0.4545

Q.1.1.4 What is the probability of selecting a respondent who is male or who prefers HP?

The probability of selecting a respondent who is male or who prefers HP is given by the sum of the probabilities of selecting a male respondent and selecting a respondent who prefers HP, minus the probability of selecting both (to avoid double counting):

Probability = (No. of Males / Total) + (No. of Females who prefer HP / Total) - (No. of Males who prefer HP / Total)

Probability = (160 / 400) + (110 / 400) - (40 / 400) = 0.4 + 0.275 - 0.1 = 0.575

Q.1.1.5 What is the probability of selecting a respondent who does not prefer Lenovo?

The probability of selecting a respondent who does not prefer Lenovo is given by the number of respondents who do not prefer Lenovo divided by the total number of respondents:

Probability = (Total - No. of respondents who prefer Lenovo) / Total

Probability = (400 - 110) / 400 = 290 / 400 = 0.725

The complete question is:

The following contingency table gives the results of a sample survey of South African male and female respondents with regard to their preferred brand of notebook:

                              HP  Lenovo  Dell  Total

No. of Females        110    60   70    240

No. of Males             40    50   70    160

Total                        150    110  140    400

Q.1.1.1 What is the probability of randomly selecting a male respondent from the sample?

Q.1.1.2 What is the probability of randomly selecting a respondent who is female and prefers HP?

Q.1.1.3 What is the probability of selecting a male respondent, given that the preferred brand is Lenovo?

Q.1.1.4 What is the probability of selecting a respondent who is male or who prefers HP?

Q.1.1.5 What is the probability of selecting a respondent who does not prefer Lenovo?

To know more about probability:

https://brainly.com/question/31828911


#SPJ4

AH PLEASE SOMEONE HELP

Answers

Answer:

Variant b

Step-by-step explanation:

If you multiply it should be a+b but if you divided

A+b-c

help me, please. I'm not very good at math

Answers

your answers will be A, B and D

Answer:

1st, 2nd, 3rd

Step-by-step 1explanation:

30+40+5=75

30+40=70

70+5=75

20+1+50+4

=20+50=70

1+4=5

70+5=75

50+30-5  

50+30=80

80-5=75

I hope this helps :)

find the hcf of px4 + px ,qx3 _ qx ​

Answers

Step-by-step explanation:

1st expression

= px^4 + px

= px ( x³ + 1 )

= px ( x + 1) (x² - x + 1)

2nd expression

= qx³ - qx

= qx ( x² - 1 )

= qx ( x + 1) ( x - 1)

HCF = x ( x + 1)

Hope it will help :)❤

Let R be the binary relation defined on a set of all integers Z as follows: for all integers m and n, mRn m’ – n’ is divisible by 6. a) Is R an equivalence relation? Check the conditions. b) What is the equivalence class of -17?
Previous question

Answers

The required solutions are:

a) Yes, the relation R is an equivalence relation.

b)The equivalence class of -17 is {-17, -23, -29, -35, ...}.

a) In order to determine whether R is an equivalence relation or not, we need to check if it satisfies the following three conditions:

Reflexibility: For all integers m, mRm should hold. In the given case, if we take m=n, we have m-n=n-m=0, which is divisible by 6. So, we can see that the reflexibility is satisfied.Transitivity: For all integers m, n, and p, if mRn and nRp hold, then mRp should also hold. Assume mRn and nRp, which means m-n, and n-p are both divisible by 6. To check transitivity, we need to check if m - p is divisible by 6. By adding the two previous conditions, we have (m-n) + (n-p) = m-p, which is also divisible by 6. Therefore, transitivity is satisfied.Symmetry: For all integers m and n, if mRn holds, then nRm should also hold. If mRn, it means m-n is divisible by 6. In order to check the symmetry, we need to check if n - m is divisible by 6. We can use the fact that a-b = -(b-a), we can rewrite n - m as -(m - n), which is divisible by 6. So, we can say that symmetry is satisfied.

We can see that the relation 'R' satisfies all the conditions ( reflexibility, symmetry, and transitivity), so R is an equivalence relation.

b) In order to find the equivalence class of -17, we need to find all integers that are related to -17 under the relation R.

We can rewrite the relation as mRn if and only if m' - n' = 6k for some integer k.

In this case, -17Rn if and only if (-17)' - n' = -17 - n = 6k for some integer k.

To find all integers n that satisfy this equation, we can rearrange it as n = -17 - 6k.

By putting in different values of k, we can find all the integers n that are in the equivalence class of -17.

For example, when k = 0, n = -17 - 6(0) = -17. So, -17 is in the equivalence class of -17.

We can also see that when k = 1, n = -17 - 6(1) = -23. So, -23 is also in the equivalence class of -17.

The equivalence class of -17 consists of all integers that can be obtained by subtracting multiples of 6 from -17. So, the equivalence class of -17 is {-17, -23, -29, -35, ...}.

Learn more about equivalence class at:

https://brainly.com/question/30956755

#SPJ4

If f is any function, then the associated Green's Function G[f] is given by G[f](x) = integral ^x_0 f(s) sin(x - s)ds. Use variation of parameters to show that G[f] is a solution of y" + y = f(x).

Answers

We have: u''(x) = ƒ(x)cot(x) - 2u'(x)cot(x).Thus, we can find a particular solution of this differential equation by using variation of parameters.

Let G(x) = ƒ(s)sin(x - s) ds.

Then, by the product rule, we have: G' = ƒ(s)cos(x - s) ds - ƒ(s)sin(x - s) ds, and G'' = -ƒ(s)sin(x - s) ds - ƒ(s)cos(x - s) ds. Hence, we have:G'' + G = ƒ(s)sin(x - s) ds - ƒ(s)cos(x - s) ds + ƒ(s)sin(x - s) ds = ƒ(s)sin(x - s) ds = G.

So, G is indeed a solution of y'' + y = ƒ(x).Next, we will use variation of parameters to find a second solution of the same differential equation.

Let us suppose that we have another solution of the form y = u(x) sin(x).

Then, y' = u(x)cos(x) + u'(x)sin(x), and y'' = - u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x).

Substituting these into the differential equation, we get:- u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x) + u(x)sin(x) = ƒ(x)2u'(x)cos(x) + u''(x)sin(x) = ƒ(x)

Dividing by sin(x), we get:2u'(x)cot(x) + u''(x) = ƒ(x)cot(x).

Now, let us assume that the second solution is of the form y = u(x)sin(x), where u is a function to be determined.

Then, we have: y' = u(x)cos(x) + u'(x)sin(x) and y'' = - u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x).

Substituting these into the differential equation, we get: - u(x)sin(x) + 2u'(x)cos(x) + u''(x)sin(x) + u(x)sin(x) = ƒ(x)2u'(x)cos(x) + u''(x)sin(x) = ƒ(x)

Dividing by sin(x), we get:2u'(x)cot(x) + u''(x) = ƒ(x)cot(x).

Hence, we have: u''(x) = ƒ(x)cot(x) - 2u'(x)cot(x).Thus, we can find a particular solution of this differential equation by using variation of parameters.

Know more about differential equation here,

https://brainly.com/question/32538700

#SPJ11

O There were 9 bags of
candy donated for the
neighborhood party.
Each bag contained
245 pieces. How much
candy did they have
for the party?

Answers

9*245 =2205
hope this helps

Assume that the prevalence of breast cancer is 13%. The
diagnostic test has a sensitivity of 86.9% and a
specificity of 88.9%. If a patient gets a positive result
What is the probability that the patient has breast cancer?

Answers

The probability that the patient has breast cancer given a positive result is 62.2%.

The probability of testing positive given the patient has breast cancer is:

P(P|C) = 0.869

The specificity of the test is 88.9% or 0.889, meaning that the test will correctly identify 88.9% of patients who do not have breast cancer as not having the disease.

So, the probability of testing negative given the patient does not have breast cancer is:

P(N|N) = 0.889

Now, using Bayes' theorem:

P(C|P) = P(P|C) * P(C) / P(P)

where,P(P) = P(P|C) * P(C) + P(P|N) * P(N)

Here, P(P|N) is the probability of testing positive given that the patient does not have breast cancer. This is equal to 1 - specificity = 1 - 0.889 = 0.111.

So, P(P) = P(P|C) * P(C) + P(P|N) * P(N) = 0.869 * 0.13 + 0.111 * (1 - 0.13) = 0.1823

So,P(C|P) = 0.869 * 0.13 / 0.1823 = 0.622 or 62.2%

Learn more about probability at:

https://brainly.com/question/30841158

#SPJ11

The American Hospital Association stated in its annual report that the mean cost to community hospitals per patient per day in U.S. hospitals was $1231 in 2007. In that same year, a random sample of 25 daily costs in the state of Utah hospitals yielded a mean of $1103. Assuming a population standard deviation of $252 for all Utah hospitals, do the data provide sufficient evidence to conclude that in 2007 the mean cost in Utah hospitals is below the national mean of $1231? Perform the required hypothesis test at the 5% significance level.

Answers

We can conclude that the null hypothesis is rejected. There is sufficient evidence to support the claim that the mean cost in Utah hospitals is below the national mean of $1231.

How is this so?

H₀: μ ≥ 1231 (The mean cost in Utah hospitals is greater than or equal to the national mean)

Hₐ: μ < 1231 (The mean cost in Utah hospitals is below the national mean)

Given

Sample mean (x) = $1103Sample size (n) = 25Population standard deviation (σ) = $252Significance level (α) = 0.05

The test statistic for a one-sample t-test is given by

t = (x - μ) / (σ / √n)

Substituting we have

t = (1103 - 1231) / (252 / √25)

≈ -6.103

To determine the critical value, we need to find the critical t-value at the 5% significance level with degrees of freedom

(df) equal to (n - 1)

= (25 - 1)

= 24.

Using a t-distribution table or calculator, the critical value is approximately -1.711.

Since the calculated test statistic (-6.103) is smaller than the critical value (-1.711) and falls into the critical region, we reject the null hypothesis.

Learn more about standard deviation  at:

https://brainly.com/question/475676

#SPJ4

y= 2x-3
y= x+4
Graph each system and determine the number of the solutions that it has. If it has one solution, name it.

Answers

x=7
y=11
basically just put the equations together because they are both equal to y

2x-3 = x+4
then just evaluate that and you’ll find x
after just input the answer into one of the equations and then you get your answers
i hope this help!!

Do males or females feel more tense or stressed out at work? A survey of employed adults conducted online by a company on behalf of a research organization revealed the data in the contingency table shown to the right. Complete parts (a) through (d) below. Felt Tense or Stressed Out at Work Yes No Total Gender Male 100 200 300 Female 145 125 270 Total 245 325 570 a. What is the probability that a randomly selected​ person's gender is​ female?
b. What is the probability that a randomly selected person feels tense or stressed out at work and is​ female?
c. What is the probability that a randomly selected person feels tense or stressed out at work or is​ female?
d. Explain the difference in the results in​ (b) and​ (c).

Answers

A survey of employed adults conducted online by a company on behalf of a research organization revealed the data in the contingency table is as follows:

a) The probability that a randomly selected​ person's gender is​ female is 270/570 or 0.474, which is approximately 47.4%.Formula used: P (Female) = Number of Females/Total Number of Individuals

b) The probability that a randomly selected person feels tense or stressed out at work and is​ female is 145/570 or 0.254, which is approximately 25.4%. Formula used: P (Female and Tense) = Number of Females who are Tense/Total Number of Individuals

c) The probability that a randomly selected person feels tense or stressed out at work or is​ female is: P (Female or Tense) = P(Female) + P(Tense) - P(Female and Tense)P(Tense) = (245/570) or 0.43, which is approximately 43%P(Female or Tense) = 0.47 + 0.43 - 0.254 = 0.646, which is approximately 64.6%.

d) The distinction between the outcomes in​ (b) and​ (c) is that the former shows the likelihood of being female and tense at work, whereas the latter shows the likelihood of being female or tense at work.

To know more about probability refer to:

https://brainly.com/question/27940823

#SPJ11

Find the point at which the line intersects the given plane. x = 2 - 2t, y = 3t, z = 1 + t: x + 2y - z = 7 (x, y, z) = Consider the following planes. 4x - 3y + z = 1, 3x + y - 4z = 4 (a) Find parametric equations for the line of intersection of the planes.

Answers

The parametric equations for the line of intersection of the planes 4x - 3y + z = 1 and 3x + y - 4z = 4 are:

x = (208 + 70t) / 52

y = (13 + 19t) / 13

z = t

To find the parametric equations for the line of intersection of the planes 4x - 3y + z = 1 and 3x + y - 4z = 4, we can solve these two equations simultaneously.

Step 1: Set up a system of equations:

4x - 3y + z = 1

3x + y - 4z = 4

Step 2: Solve the system of equations to find the values of x, y, and z. One way to solve the system is by using the method of elimination:

Multiply the first equation by 3 and the second equation by 4 to eliminate the y term:

12x - 9y + 3z = 3

12x + 4y - 16z = 16

Subtract the first equation from the second equation:

12x + 4y - 16z - (12x - 9y + 3z) = 16 - 3

12x + 4y - 16z - 12x + 9y - 3z = 13y - 19z = 13

Step 3: Express y and z in terms of a parameter, let's call it t:

13y - 19z = 13

y = (13 + 19z) / 13

We can take z as the parameter t:

z = t

Substituting the value of z in terms of t into the equation for y:

y = (13 + 19t) / 13

Step 4: Express x in terms of t:

From the first equation of the original system:

4x - 3y + z = 1

4x - 3((13 + 19t) / 13) + t = 1

4x - (39 + 57t) / 13 + t = 1

4x - (39 + 57t + 13t) / 13 = 1

4x - (39 + 70t) / 13 = 1

4x = (39 + 70t) / 13 + 1

x = ((39 + 70t) / 13 + 13) / 4

x = (39 + 70t + 169) / 52

x = (208 + 70t) / 52

Therefore, the parametric equations for the line of intersection of the planes 4x - 3y + z = 1 and 3x + y - 4z = 4 are:

x = (208 + 70t) / 52

y = (13 + 19t) / 13

z = t

Learn more about parametric equations:

https://brainly.com/question/30451972

#SPJ11

A 12ft basketball hoop casts an 8 ft shadow. Find the length of the shadow of a 4 ft tall fence.

Answers

Set up a ratio of height over shadow for each :

12/8 = 4/x

Cross multiply:

12x = 32

Divide both sides by 12:

X = 2 2/3 feet

The shadow is 2 2/3 feet.

What is the measure of angle C?

Answers

Answer:

angle C = 36°

Step-by-step explanation:

Fun fact that I found out:

all interior angles of a triangle added together = 180°

5x + 3x + 2x = 180°

combine like terms:

10x = 180°

divide both sides of the equation by 10:

x = 18°

angle C = 2(18°) = 36°

The cost of renting a bicycle, y, for
x hours can be modeled by a linear
function. Renters pay a fixed insurance
fee of $12 plus an additional cost of $10
per hour, for a maximum of 6 hours.
What is the range of the function for this
situation?
F {22, 32, 42, 52, 62, 72}
G {1, 2, 3, 4, 5, 6}
H {12, 24, 36, 48, 60, 72}
J {22, 34, 46, 58, 70, 82}

Answers

Answer:

F

Step-by-step explanation:

1(10) + 12= 22

2(10) + 12= 32

etc.....

25
What is the solution to the equation 12(x+5) = 4x?

Answers

Answer:

x = -7.5

Step-by-step explanation:

12(x+5) = 4x

12x+ 60 = 4x

60 = -8x

-7.5 = x

PLEASE ASAP HELP!!! ​

Answers

The correct answer is D

Simplify the expression completely.

Answers

You can’t simplify it any further. 288 1/4 is already simplified.

i have now attached the picture but it can be wrong!

The highest temperature in Las Vegas is 125 degrees Fahrenheit and the lower recorded temperature in Las Vegas is 50 degrees Fahrenheit below zero what is the difference between these two temperatures

Answers

Answer:

175 degrees Fahrenheit

Step-by-step explanation:

We are to find the difference between the two temperatures

125 - (-50)

two minuses gives a plus

125 = 50 = 175

A continuous random variable is said to have a Laplace(μ, b) distribution if its probability density function is given by

fX(x)= 1 exp(−|x−μ|), 2b b

where μ is a real number and b>0.
(i). If X ∼ Laplace(0,1), find E(X) and Var(X).
(ii). If X ∼ Laplace(0,1) and Y = bX + μ, show Y ∼ Laplace(μ, b). (iii). If W ∼ Laplace(2,8), find E(W) and Var(W).

Answers

(i) For X ~ Laplace(0,1):

E(X) = 0, Var(X) = 2.

(ii) If X ~ Laplace(0,1) and Y = bX + μ:

Y ~ Laplace(μ, b).

(iii) For W ~ Laplace(2,8):

E(W) can be approximated numerically.

Var(W) = 128.

(i) If X ~ Laplace(0,1), we need to find the expected value (E(X)) and variance (Var(X)).

The Laplace(0,1) distribution has μ = 0 and b = 1. Substituting these values into the PDF, we have:

fX(x) = (1/2) * exp(-|x|)

To find E(X), we integrate x * fX(x) over the entire range of X:

E(X) = ∫x * fX(x) dx = ∫x * [(1/2) * exp(-|x|)] dx

Since the Laplace distribution is symmetric about the mean (μ = 0), the integral of an odd function over a symmetric range is zero. Therefore, E(X) = 0 for X ~ Laplace(0,1).

To find Var(X), we use the formula:

Var(X) = E(X^2) - [E(X)]^2

First, let's find E(X^2):

E(X^2) = ∫x^2 * fX(x) dx = ∫x^2 * [(1/2) * exp(-|x|)] dx

Using the symmetry of the Laplace distribution, we can simplify the integral:

E(X^2) = 2 * ∫x^2 * [(1/2) * exp(-x)] dx (integral from 0 to ∞)

Solving this integral, we get:

E(X^2) = 2

Now, substitute the values into the variance formula:

Var(X) = E(X^2) - [E(X)]^2 = 2 - 0 = 2

Therefore, for X ~ Laplace(0,1), E(X) = 0 and Var(X) = 2.

(ii) To show that Y = bX + μ follows a Laplace(μ, b) distribution, we need to find the probability density function (PDF) of Y.

Using the transformation method, let's express X in terms of Y:

X = (Y - μ)/b

Now, calculate the derivative of X with respect to Y:

dX/dY = 1/b

The absolute value of the derivative is |dX/dY| = 1/b.

To find the PDF of Y, substitute the expression for X and the derivative into the Laplace(0,1) PDF:

fY(y) = fX((y-μ)/b) * |dX/dY| = (1/2) * exp(-|(y-μ)/b|) * (1/b)

Simplifying this expression, we get:

fY(y) = 1/(2b) * exp(-|y-μ|/b)

This is the PDF of a Laplace(μ, b) distribution, thus showing that Y ~ Laplace(μ, b).

(iii) For W ~ Laplace(2,8), we need to find E(W) and Var(W).

The PDF of W is given by:

fW(w) = (1/16) * exp(-|w-2|/8)

To find E(W), we integrate w * fW(w) over the entire range of W:

E(W) = ∫w * fW(w) dw = ∫w * [(1/16) * exp(-|w-2|/8)] dw

This integral can be challenging to solve analytically. However, we can approximate the expected value using numerical methods or software.

To find Var(W), we can use the property that the variance of the Laplace distribution is given by 2b^2, where b is the scale parameter.

Var(W) = 2 * b^2

= 2 * (8^2)

= 2 * 64

= 128

Therefore, Var(W) = 128 for W ~ Laplace(2,8).

Know more about the Laplace distribution click here:

https://brainly.com/question/30759963

#SPJ11

FILL in the blank:AB E M nxn (R) (i) det (A.B) = ____________ . (ii) A is invertible if and only if _____________ .

Answers

Answer:

For square matrices A and B of equal size, the determinant of a matrix product equals the product of their determinants: det (A.B) = det (A) det (B) 1. A is invertible if and only if its determinant is nonzero 1.

Step-by-step explanation:

If You Have NO EXPLANATION Don't ANSWER

Answers

Answer:

B. A = 1/2(7)h

Step-by-step explanation:

Formula for area of triangle = 1/2 x base x height

H is the height of the triangle.

7cm is identified as the base of the triangle.

1/2(7)h is also the same thing as 1/2 x 7 x h basically.

Answer:

B

Step-by-step explanation:

The area (A) of a triangle is calculated as

A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the perpendicular height )

Here b = 7 and h = h , then

A = [tex]\frac{1}{2}[/tex] (7) h → B

what is the price of a $600 bike 15% off

Answers

Answer: You will pay $510 for a item with original price of $600 when discounted 15%.

The time it takes for someone to finish a bowl of ramen can be modeled by a random variable with the following moment generating function: 

M(t)= 1/ (1−0.05t​)1​,t<0.05 


Find the variance of the time it takes for someone to finish a bowl of ramen.

Answers

Therefore, the variance of the time it takes for someone to finish a bowl of ramen is 4.6875.

Given, The moment generating function of the time it takes for someone to finish a bowl of ramen is

M(t)= 1/ (1−0.05t​)1​,t<0.05 We have to find the variance of the time it takes for someone to finish a bowl of ramen.

The variance of the random variable can be calculated by the formula Variance = M''(0) - [M'(0)]^2 where M(t) is the moment generating function of the random variable M'(t) is the first derivative of M(t)M''(t) is the second derivative of M(t)

We need to find M''(t) and M'(t)M(t) = 1/(1 - 0.05t)M'(t) = [0.05/(1 - 0.05t)^2]M''(t) = [0.1/(1 - 0.05t)^3] Now, at t = 0, M(0) = 1, M'(0) = 1.25, M''(0) = 6.25 Variance = M''(0) - [M'(0)]^2 Variance = 6.25 - (1.25)^2 Variance = 6.25 - 1.5625 Variance = 4.6875

To Know more about variance visit:

https://brainly.com/question/30044695

#SPJ11

Given: The time it takes for someone to finish a bowl of ramen can be modeled by a random variable with the following moment generating function: M(t)= 1/ (1−0.05t​)1​,t<0.05. The variance of the time it takes for someone to finish a bowl of ramen is 400.

The moment generating function of a random variable is defined as [tex]$M(t) = \mathbb{E}(e^{tX})$[/tex] for all t in an open interval around 0 which X is a random variable.

We are given that the moment generating function of the random variable T is given by:

[tex]$$M(t)= \frac{1}{1-0.05t} ,\ t < 0.05$$[/tex]

The [tex]$n^{th}$[/tex] derivative of M(t) at 0 is given by:

[tex]$$\frac{d^n}{dt^n} M(t) \biggr|_{t=0} = \mathbb{E}(X^n)$$[/tex]

We differentiate $[tex]M(t)$[/tex] with respect to $t$ to get [tex]$$M'(t) = \frac{0.05}{(1 - 0.05t)^2}$$[/tex].

Differentiating [tex]$M'(t)$[/tex] with respect to [tex]$t$[/tex] we get [tex]$$M''(t) = \frac{2(0.05)^2}{(1-0.05t)^3}$$[/tex].

Differentiating [tex]$M''(t)$[/tex] with respect to [tex]$t$[/tex] we get [tex]$$M'''(t) = \frac{6(0.05)^3}{(1-0.05t)^4}$$[/tex].

Substituting t = 0, we get [tex]$$M'(0) = \frac{1}{0.05} = 20$$[/tex]

[tex]$$M''(0) = \frac{2}{(0.05)^3} = 800$$[/tex]

[tex]$$M'''(0) = \frac{6}{(0.05)^4} = 4800$$[/tex]

Using the following formula to calculate the variance of X: [tex]$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$[/tex], where [tex]$$\mathbb{E}(X^2) = M''(0) = 800$$[/tex].

[tex]$$[\mathbb{E}(X)]^2 = [M'(0)]^2 = 400$$[/tex]

Hence, we get:$$Var(X) = 800 - 400 = \boxed{400}$$.

To know more about Moment generating function, visit:

https://brainly.com/question/30763700

#SPJ11

One kilogram is approximately 2.2 pounds. Write a direct variation equation that relates x kilograms to y pounds.

Answers

Answer:

2.2y=1x or just x

Step-by-step explanation:

Answer: y=2.2x

Step-by-step explanation:

In each case, write the principal part of the function at its isolated singular points and determine whether that point is a removable singular point, an essential singular point or a pole (please also determine the order m for a pole). Then calculate the residue of the corresponding singular point. a) ( nett for isolatod singular point = = -1 b) (x - 1)2022 exp(-) for isolated singular point = 1.

Answers

The principal part at the isolated singular point -1 is not provided, so we cannot determine its nature or residue. And b) The principal part at the isolated singular point 1 is (x - 1)^2022 exp(-1). It is a pole of order 2022, and its residue is 0.

a) The principal part at the isolated singular point -1 is not provided, so we cannot determine its nature (removable singular point, essential singular point, or pole) or calculate its residue without additional information.

b) The given function is (x - 1)^2022 exp(-1). At the isolated singular point x = 1, the principal part of the function is (x - 1)^2022 exp(-1). Here, (x - 1)^2022 represents the pole part of the function, and exp(-1) represents the non-pole part.

Since the term (x - 1)^2022 dominates near x = 1, we can conclude that x = 1 is a pole. The order of the pole is determined by the exponent of (x - 1), which is 2022 in this case.

To calculate the residue, we need more information about the function, specifically the coefficients of the Laurent series expansion near the singular point. Without that information, we cannot determine the residue at x = 1.

To learn more about “The Laurent series” refer to the https://brainly.com/question/32312802

#SPJ11

How many solutions does this equation have? 9z = –8 + 7z
-no solution
-one solution
-infinitely many solutions

Answers

Answer:

one solution.            

Help pls it is my homework
Can y'all help me?

Answers

Answer:

A

Step-by-step explanation:

the mean is what occurs most often

What is the range of the function shown on the graph above? The graph is in the photo
OA. -6 < y < 9
OB. -6 _< y _< 9
OC. 0 _< y _< 7
OD. 0 < y < 7

Answers

The answer is OA. 6 & it; y & it; 9
Other Questions
Geronimo wants to move an object 12 meters. Calculate the net work done by the object with an applied force of 150 N and a friction force of 37 N. Portfolio Benchmark 22.00% 17.88% 16.00% 21.25% -7.50% -9.63% -2.30% -3.88% 8.63% 3.25% 9.15% 9.63% 11.21% 15.25% 6.25% 5.75% -37.00% -42.00% 15.00% 13.75% An analyst is trying to understand the variation of portfolio returns shown in the left column by analyzing the variation of benchmark returns in the right column. Here, the analyst uses the benchmark returns as the explanatory variable, i.e., the x-variable, to explain the variation of portfolio returns, the y-variable. The analyst performs a regression analysis between the x and y variables. The y-intercept and slope coefficient of the x-variable are 0.013 and .892, respectively. If the benchmark return is 14%, the regression model will estimate the portfolio return closest to O 0% O 89.2% 1.3% O 13.79% Cuales son los pases del continente americano? (Perdon si pregunto pero es para una tarea importante :c ) The width of a table is 2 feet less than the length. The area is 20 square feet. Find the dimensions. Show and explain all work using mathematical concepts in this module. (use quadratic equation) Find slops ;3y=9x+18 show that the difference in decibel levels b1 and b2 of a sound source is related to the ratio of its distances r1 and r2 from the receivers by the formula The number of dandelions at the beginning of the summer was 2,000. The population of dandelions is expected to grow at a rate of 2.5% each day. How many dandelions should we expect after 30 days? Velocity Automobiles Inc. has recently launched a sedan with a biometric vehicle access lock. This feature provides better anti-theft protection than the current locks being offered by other sedans in its class. As a result, the demand for this model is higher than the others. In the context of a promotional strategy, the unique feature of the sedan exemplifies _____.a.a touch pointb.brand harmonizationc.a competitive advantaged.product parity the olmec and aztec were civilizations that flourished during the __________ period of mesoamerican history. Can someone help with number 1 please? A firm in a perfectly competitive market has a cost function defined by C = 50+40q+0.5q^2. (Hint: Given this cost function, Marginal Cost = = 40 + q.) Part A: (4 marks) What must the market price be in order for this firm to break even? Part B: (4 marks) Consider a short-run situation where the current market price is $45. (i) What output should the firm produce and what profit/loss does it then make? (2 marks) (ii) Given your answer to Part (i), should this firm continue to produce in the short run? (2 marks) plz help I'm timed and I need to hurry up 20 pts to first to answer right plz help List some words that are the opposite of the following. Then give the meaning of these words: a. appropriation b. performance c. space d. hybridity e. technology Question 51 ptsIn the Progressive Era, women reformers campaigned for civil rights, children's health and welfare,andO prohibitionO the spoils system.O pacifism.O retirement benefits. Sound in a limerick can be described as having:An irregular rhythma clip clop effectno alliterationa sing song effect Scenario and General Fund budgetary journal entriesThe scenario: Croton City maintains four governmental-type funds: a General Fund, a Library Special Revenue Fund, a Capital Projects Fund, and a Debt Service Fund.Croton City started its calendar year 2019 with the following General Fund balances (all numbers are in thousands of dollars).Debits CreditsCash $1,800 Property taxes receivable 800 Salaries payable $700Deferred property tax revenues 300Unassigned fund balance - 1,600Totals $2,600$2,600Croton has adopted the following budgetary and accounting policies:Encumbrance accounting is used only for the acquisition of supplies and for the award of contracts for construction and construction-related activities. Open encumbrances lapse at the end of the year, but are considered in developing the next year's budget.Because final income tax returns are not required to be filed until April 15 of the year following the end of a calendar year, "available" for income taxes is defined as taxes expected to be collected within 120 days after the end of the calendar year.Croton allows its employees to accumulate unused vacation days and to receive cash for up to 30 days of unused vacation leave at retirement. Such payments are charged to the departments appropriation for salaries.All revenues received by the library from fines, donations, and fundraising events are credited to Revenuesmiscellaneous.General Fund budgetary journal entries: Prepare journal entries to record the following budgetary transactions applicable to the General Fund. Also, prepare an appropriations ledger for the Public safety supplies appropriation. (Because you will need to prepare trial balances for each of the funds for Part D of this problem, it is suggested that you post the opening trial balance and the journal entries to general ledger T accounts.)Revenuesproperty taxes $9,000Revenuespersonal income taxes 5,000Revenuesintergovernmental 1,000Revenuesrecreation fees 600Appropriations: Public safety salaries 7,000Public safety supplies 500Public works salaries 5,000Parks salaries 2,300Transfer to Library Fund 100Transfer to Debt Service Fund 1,200The Croton council adopted the following General Fund budget for 2019:Croton's Public Safety Department placed two purchase orders against its supplies appropriation, one for $300 for firearms and one for $150 for uniforms.The firearms were received, with an invoice for $330. The purchase order allowed shipment of 10 percent over the amount ordered, so the invoice was approved.The invoice for firearms was paid.The Croton Cats won the World Series. To provide more funds for crowd control at the parade, the council increased the Public safety salaries appropriation by $100.NOTE: Not all of the journal entry rows are needed to record the budget in Ref. 1. Select "No entry" as your answer and leave the Debit and Credit answers blank (zero) for any rows that are not needed. . I am described as being conductive, malleable, shiny, and reactive with HCl. I am one of the most reactive elements. I turn black within seconds when I am exposed to air. If someone drops water on me, I will explode. When I do explode I send off characteristic purple-red (violet) flame. Who am I? On the average, how much energy is lost from each trophic level? explain why i get alot of these please help Settlers who used this trail were escaping religious discrimination.- California Trail- Old Spanish Trail- Mormon Trail- Santa Fe Trail