abc is dilated by a scale factor of 4 with a center of dilation at the origin to form a’b’c’ then a’b’c’ is dilated by a scale factor of 3 over 4 with a center of dilation at the origin to create a’’b’’c’’ what are the coordinates of a’’b’’c’’

Answers

Answer 1

The coordinates of the vertices of the triangle A''B''C'' after the two successive dilations are (3 times the x-coordinate and 3 times the y-coordinate of the original triangle's vertices).

To find the coordinates of the vertices of the dilated triangle A''B''C'' after two successive dilations, first with a scale factor of 4 and then with a scale factor of 3/4.

Firstly, Apply the first dilation with a scale factor of 4 to the original triangle ABC, with a center of dilation at the origin. This can be done by multiplying each coordinate of the original triangle by 4.

The coordinates of the dilated triangle A'B'C' after the first dilation would be;

A' = (4 × x-coordinate of A, 4 × y-coordinate of A)

B' = (4 × x-coordinate of B, 4 × y-coordinate of B)

C' = (4 × x-coordinate of C, 4 × y-coordinate of C)

Now, we apply the second dilation with a scale factor of 3/4 to the dilated triangle A'B'C', again with a center of dilation at the origin. This can be done by multiplying each coordinate of A'B'C' by 3/4.

The coordinates of the dilated triangle A''B''C'' after the second dilation would be;

A'' = ((3/4) × x-coordinate of A', (3/4) × y-coordinate of A')

B'' = ((3/4) × x-coordinate of B', (3/4) × y-coordinate of B')

C'' = ((3/4) × x-coordinate of C', (3/4) × y-coordinate of C')

Plugging in the values of A', B', C' obtained from the first dilation, we get;

A'' = ((3/4) × 4 × x-coordinate of A, (3/4) × 4 × y-coordinate of A)

B'' = ((3/4) × 4 × x-coordinate of B, (3/4) × 4 × y-coordinate of B)

C'' = ((3/4) × 4 × x-coordinate of C, (3/4) × 4 × y-coordinate of C)

Simplifying further, we get;

A'' = (3 × x-coordinate of A, 3 × y-coordinate of A)

B'' = (3 × x-coordinate of B, 3 × y-coordinate of B)

C'' = (3 × x-coordinate of C, 3 × y-coordinate of C)

Therefore, the  coordinates of the vertices of the triangle A''B''C'' after the two successive dilations are (3 times the x-coordinate and 3 times the y-coordinate.

To know more about coordinates here

https://brainly.com/question/16634867

#SPJ1


Related Questions

Determine the volume of the "leaning regular hexagonal prism.
It has a base perimeter of 36 inches, a slanted height of 11 inches, and is leaning at
70°. The base is a regular hexagon with a perimeter of 36 inches.
70%
11"

Answers

The volume of the leaning regular hexagonal prism is 396.90 cubic inches.

The volume of a leaning regular hexagonal prism can be calculated using the formula

V = (P×h×sin(a))/2, where P is the perimeter of the base, h is the slanted height of the prism, and a is the angle at which the prism is leaning.

In the given problem, P = 36 inches, h = 11 inches, and a = 70°.

Substituting these values in the formula, we get:

V = (36×11×sin(70°))/2

= 396.90 inches³

Therefore, the volume of the leaning regular hexagonal prism is 396.90 cubic inches.

To learn more about the volume of a hexagonal prism visit:

https://brainly.com/question/10414589.

#SPJ1

Suppose that you borrow $10,000 for four years at 8% toward the purchase of a car. Use PMT=-
find the monthly payments and the total interest for the loan.
The monthly payment is $
(Do not round until the final answer. Then round to the nearest cent as needed.)
an example Get more help.
Clear all
•PA
nt
to
Check answer
LJU
orrec

Answers

A) The monthly payment (PMT) for the loan is $-244.13.

B) The total interest for the loan is $1,718.20 (rounded to the nearest cent).

How to calculate the monthly payments and the total interest for the loan?

To find the monthly payments (PMT) and the total interest for the loan, we use the formula for calculating the PMT for a loan with a fixed interest rate, known as the Amortizing Loan Payment Formula:

PMT = P × r × (1 + r)^n / ((1 + r)^n - 1)

Where:

PMT = Monthly payment

P = Principal amount (loan amount)

r = Monthly interest rate (annual interest rate divided by 12)

n = Number of months in the loan term

Given:

No of periods = 48

Principal amount (P) = $10,000

Annual interest rate = 8%

Loan term = 4 years

First, let's calculate the monthly interest rate (r):

r = Annual interest rate / 12 months

r = 8% / 12

r = 0.08 / 12

r = 0.00667 (rounded to 5 decimal places)

Next, we calculate the number of months in the loan term (n):

n = Loan term in years × 12 months/year

n = 4 years × 12

n = 48

Let's put the values into the formula to calculate the monthly payment (PMT):

PMT = $10,000 × 0.00667 × (1 + 0.00667)^48 / ((1 + 0.00667)^48 - 1)

PMT = $-244.13 (rounded to the nearest cent)

B) To calculate the total interest, we can multiply the monthly payment by the number of months in the loan term, and then subtract the principal amount:

Total interest = (PMT × n) - P

Total interest = ($157.08 × 48) - $10,000

Total interest = $1,718.20

Thus, the total interest for the loan is  $1,718.20 (rounded to the nearest cent).

Read more about loans at brainly.com/question/30464562

#SPJ1

After how many minutes will the two pools have the same amount of water?
How much water will be in each pool when they have the same amount?

Answers

It will take 16.84 minutes for the two pools to have the same amount of water and when the two pools have the same amount of water, each pool will have 385.84 liters of water.

The amount of water in the first pool is 770 liters, since no water is being added to it.

The amount of water in the second pool is 45.75t liters, since water is being added to it at a rate of 45.75 liters per minute.

To find the time at which the two pools have the same amount of water, we can set these two expressions equal to each other and solve for t:

770 = 45.75t

t = 770 / 45.75

t = 16.84 minutes

So it will take approximately 16.84 minutes for the two pools to have the same amount of water.

To find the amount of water in each pool when they have the same amount, we can substitute t = 16.84 into either expression.

Using the expression for the second pool, we have:

Amount of water in second pool = 45.75t

= 45.75(16.84)

= 771.69 liters

Therefore, when the two pools have the same amount of water, each pool will have 771.69 / 2 = 385.84 liters of water.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

Match the following. Match the items in the left column to the items in the right column.
1. set builder notation
2. element
3. set
4. line graph
5. inequality
6. real number
a shorthand way to write a set
(less than), (greater than), (less than
or equal to), (greater than or equal to)
visual tool used to illustrate solution
sets
a collection or group of objects
indicated by braces, (
a member of a set
positive or negative, rational or
irrational numbers including zero

Answers

The items in the left column should be matched with the items in the right column as follows;

Set builder notation: a shorthand way to write a set.

Inequality: (less than), (greater than), (less than or equal to), (greater than or equal to).

Line graph; visual tool used to illustrate solution sets.

Set: a collection or group of objects indicated by braces, { }.

Element: a member of a set.

Real number: positive or negative, rational or irrational numbers including zero.

What is an inequality?

In Mathematics and Geometry, an inequality simply refers to a mathematical relation that is typically used for comparing two (2) or more numerical data and variables in an algebraic equation based on any of the inequality symbols;

Greater than (>).Less than (<).Greater than or equal to (≥).Less than or equal to (≤).

What is a rational number?

In Mathematics, a rational number can be defined a type of number which comprises fractions, integers, terminating or repeating decimals such as the square root of 11.

In conclusion, a set simply refers to a collection or group of elements (objects) that is always indicated by curly braces, { }.

Read more on rational number here: brainly.com/question/20400557

#SPJ1

Find each length. Round to the nearest hundredth. Show work.
13.
78⁰
20
X
14.
32
18

Answers

The measure of side length x in triangle 13 and 14 are 20.45 and 15.26 respectively.

What are the lengths of the triangles marked x?

The figures in the image are right-triangle.

To find the measure of x, we use the trigonometric ratio.

In question 13)

Angle θ = 78°

Opposite to angle θ = 20

Hypotensue = x

Note that: sine = opposite / hypotensue

sin( 78 ) = 20 / x

Solve for x

x = 20 / sin( 78 )

x = 20.45

in question 14)

Angle θ = 32°

Adjacent to angle θ = x

Hypotensue = 18

Note that: cosine = adjacent / hypotensue

cos( 32 ) = x / 18

Solve for x

x = cos( 32 ) × 18

x = 15.26

Therefore, the value of x is 15.26.

Learn more about trigonometric ratio here: brainly.com/question/28016662

#SPJ1

3. Boxes are being loaded with apples. All of the boxes are the same size but have differing
numbers of apples in them. Each box is weighed and the weight is compared to the number
of apples in the box. The results are shown in the scatter plot below.

Answers

a. See image below

b. This is a positive association between the number of apples and the weight

c. The estimate of the y-intercept of my line of best fit to the nearest half-pound is 2 pounds

What is a Positive Association?

In mathematics, a positive association refers to a relationship between two variables where an increase in the value of one variable is accompanied by an increase in the value of the other variable. This means that as one variable increases, the other variable also tends to increase.

Thus, as the pound increased, so did the number of apples, so this is a positive association

c. The estimate: when x= 0, the y-intercept is 2.0 pounds

Read more about scatter plot here:

https://brainly.com/question/6592115

#SPJ1

Rob and Ashley are riding their bicycles uphill. Currently, Rob is 5.7 km from the top and climbing at 0.24 km/min. Ashley is 4.5 km from the top and riding at 0.17 km/min. Estimate when Rob will be closer to the top than Ashley​

Answers

After approximately 17.14 minutes, Rob will be closer to the top than Ashley.

How to solve the problem

Rob's distance from the top = 5.7 - 0.24t

Ashley's distance from the top = 4.5 - 0.17t

We want to find the time t when Rob's distance from the top is less than Ashley's distance:

5.7 - 0.24t < 4.5 - 0.17t

Now, we'll isolate the t variable by adding 0.17t to both sides and subtracting 4.5 from both sides:

0.07t > 1.2

t > 1.2 / 0.07

t > 17.14

Read more on equations here:https://brainly.com/question/1214333

#SPJ1

A bag contains five ​batteries, all of which are the same size and are equally likely to be selected. Each battery is a different brand. If you select two batteries at​ random, use the counting principle to determine how many points will be in the sample space if the batteries are selected ​a) with replacement. ​b) without replacement.

Answers

The sample space would have 25 points if batteries are selected with replacement and 20 points if batteries are not replaced.

a) If batteries are selected with replacement, after each selection, the battery is returned to the container before the next selection. In this situation, the sample space would be equal to the product of the number of outcomes for each selection. Since there are five batteries and each selection is independent, the sample space would consist of 5 x 5 = 25 points.

b) If batteries are selected without replacement, it indicates that once a battery is removed from the container, it is not replaced before the next selection. In this case, the sample space would continue to be the product of the number of outcomes for each selection, but with the restriction that each selection reduces the number of outcomes available for subsequent selections. There are five options for the first option. For the second option, only four alternatives remain. The sample space would therefore be 5 × 4 = 20 points.

Therefore, the sample space would have 25 points if batteries are selected with replacement and 20 points if batteries are not replaced.


To know more about Counting Principle:

https://brainly.com/question/10275154

The one-to-one functions g and h are defined as follows.

Answers

The functions and their composites are g⁻¹(6) = 2, h⁻¹(x) = 7x + 8 and (h⁻¹ o h)(1) = 1

Evaluating the functions and their composites

The one-to-one functions g and h are defined as follows.

g = {(-4, -1), (1, -6), (2, 6), (6, 7)

Also, we have

h(x) = (x - 8)/7

Solving the functions expressions, we have

g⁻¹(6)

This means that we find x when g(x) = 6

From the ordered pairs, we have

g⁻¹(6) = 2

Next, we have

h⁻¹(x)

This means that we calculate the inverse function of h(x)

So, we have

h(x) = (x - 8)/7

This gives

x = (y - 8)/7

7x = y - 8

y = 7x + 8

So, we have

h⁻¹(x) = 7x + 8

Lastly, we have

(h⁻¹ o h)(1) = h⁻¹(h(1))

Using the rule

(h⁻¹ o h)(x) = h⁻¹(h(x)) = x

We have

(h⁻¹ o h)(1) = 1

Hence, the value of (h⁻¹ o h)(1) is 1

Read more about composite functions at

https://brainly.com/question/10687170

#SPJ1

The amount of laps remaining, y, in a swimmer's race after x minutes can be represented by the graph shown.

coordinate grid with the x axis labeled time in minutes and the y axis labeled number of laps remaining with a line from 0 comma 24 and 6 comma 0

Determine the slope of the line and explain its meaning in terms of the real-world scenario.

The slope of the line is 6, which means that the swimmer will finish the race after 6 minutes.
The slope of the line is 24, which means that the swimmer must complete 24 laps in the race.
The slope of the line is −4, which means that the swimmer will complete 4 laps every minute.
The slope of the line is negative one fourth, which means that the swimmer completes a lap in one fourth of a minute.

Answers

The slope of the line is -4 which represents the swimmer will complete 4 laps per minute.

In real world scenario it means how many laps they can complete per minute.

Let us consider the coordinate on the y-axis and the x-axis be ,

( x₁ , y₁ ) = ( 0, 24 )

( x₂ , y₂ ) = ( 6, 0)

The slope of a line represents the rate of change between two variables.

Here, the slope of the line represents the rate at which the number of laps remaining changes with respect to time.

Slope = ( y₂ - y₁ ) / ( x₂ - x₁ )

         = ( 0 - 24 ) / ( 6 - 0 )

         = -4

Since the slope of the line is -4, this means that for every one minute that passes.

The swimmer completes 4 laps since the slope is negative, the number of laps remaining decreases as time increases.

So in this scenario, the slope of the line tells us that the swimmer is completing laps at a rate of 4 laps per minute.

And that they will finish the race after 6 minutes when they have completed all 24 laps.

Therefore, slope of line is -4 represents the swimmer's lap completion rate which means swimmer will complete 4 laps every minute.

learn more about slope here

brainly.com/question/31709670

#SPJ1

If f(x) = (3 + x) / (x − 3), what is f(a+2)

Answers

Step-by-step explanation:

put in 'a+2' where 'x' is and compute:

( 3 + (a+2) )  / ((a+2) -3)    = (5+a) / (a-1)    

Solve Systems of Equation using Laplace:
X' = -Y
Y' = X - Y

X(0) = 1 Y(0) = 2

Answers

The solutions to the system of equations X' = -Y , Y' = X - Y using Laplace transform is given by X(t) = -1 , and Y(t) = -1 + e^t.

Systems of Equation are,

X' = -Y

Y' = X - Y

X(0) = 1

Y(0) = 2

System of equations using Laplace transforms,

First need to take the Laplace transform of both equations .

and then solve for the Laplace transforms of X(s) and Y(s).

Taking the Laplace transform of the first equation, we get,

sX(s) - x(0) = -Y(s)

Substituting in the initial condition X(0) = 1, we get,

sX(s) - 1 = -Y(s) (1)

Taking the Laplace transform of the second equation, we get.

sY(s) - y(0) = X(s) - Y(s)

Substituting in the initial condition Y(0) = 2, we get,

sY(s) - 2 = X(s) - Y(s) (2)

Eliminate X(s) from these equations by adding equations (1) and (2),

sX(s) - 1 + sY(s) - 2 = -Y(s) + X(s) - Y(s)

Simplifying, we get,

sX(s) + sY(s) = Y(s) + X(s) - 1

Using  X(s) = sY(s) - Y(s) from the first equation, substitute to get.

s(sY(s) - Y(s)) + sY(s) = Y(s) + (sY(s) - Y(s)) - 1

Expanding and simplifying, we get,

s²Y(s) - sY(s) + sY(s) = Y(s) + sY(s) - Y(s) - 1

Simplifying further, we get,

s² Y(s) = sY(s) - 1

⇒Y(s) (s -s² ) = 1

⇒Y(s) = -1 / s(s-1)

Dividing by s², we get,

Y(s) = -1 /(s(s-1)

Using the fact that X(s) = sY(s) - Y(s) from the first equation, we can substitute to get:

X(s) = s(-1 /(s(s-1)) +1/s(s-1)

Simplifying, we get

X(s) = -1/(s -1) + 1/s(s-1)

⇒X(s) = - (s-1) / s(s -1)

⇒X(s) =  -1/ s

Now we can take the inverse Laplace transform of X(s) and Y(s) to get the solutions to the original system of equations:

L⁻¹{-1/s} = -1

L⁻¹{-1/(s(s-1))} = -1 + e^t

Therefore, the solutions to the system of differential equations using Laplace transform are equals to X(t) = -1 , and Y(t) = -1 + e^t.

learn more about Laplace transform here

brainly.com/question/31472492

#SPJ1

Unit 9 lesson1 7th grade math math nation

Answers

Can I see the problem

Please help ! I need help

Answers

i gave a picture of my work with the answer hope this helps

URGENT!! ILL GIVE BRAINLIEST! AND 100 POINTS

Answers

The probabilities for this problem are given as follows:

Purchase price less than $20,000, repair cost less than $10,000: 45.74% -> about 46%.Repair costs less than $10,000, purchase cost more than $40,000: 20.3 -> about 20%.

How to calculate a probability?

A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.

The number of cars with purchase prices less than $20,000 is given as follows:

86 + 67 + 35 = 188.

Of those 188 cars, 86 had repair costs less than $10,000, hence the probability is given as follows:

p = 86/188

p = 0.4574.

The number of cars with repair costs less than $10,000 is given as follows:

86 + 71 + 40 = 197.

Of those, 40 had a purchase price of more than $40,000, hence the probability is given as follows:

p = 40/197

p = 0.203.

Missing Information

The table is given by the image presented at the end of the answer.

More can be learned about probability at brainly.com/question/24756209

#SPJ1

Solve for m∠D:
87 A B C D

Answers

Answer:

D. 96

Step-by-step explanation:

1/2 (82 + 110)

1/2 (192) = 96

Answer:

96 D

Step-by-step explanation:

What is the average rate of change for the interval
0

Answers

The average rate of change for a function over an interval can only be determined with two endpoints. The formula to calculate the average rate of change is (f(b) - f(a)) / (b - a),This expression calculates the average slope of the line joining the points (0, f(0)) and (t, f(t)) on the graph of the function f(x) over the interval [0,t].

What is Rate?

Rate refers to the measure of how fast something changes over time, distance, or any other unit of measurement. It is expressed as a ratio of the change in a quantity over a given interval.

What is function?

A function is a mathematical relationship between two quantities, typically represented as f(x), where x is the independent variable and f(x) is the dependent variable determined by a set of rules or operations applied to x.

According to the given information:

The average rate of change for the interval a to b is a measure of how much a quantity has changed, on average, per unit of time or distance during that interval. Specifically, for a function f(x), the average rate of change over the interval [a,b] is calculated as the difference in the function values at the endpoints divided by the length of the interval:

Average rate of change = (f(b) - f(a)) / (b - a)

In the given problem, if the interval is [0,t], where t is some positive value, then the average rate of change for the function f(x) over that interval is given by:

Average rate of change = (f(t) - f(0)) / t

This expression calculates the average slope of the line joining the points (0, f(0)) and (t, f(t)) on the graph of the function f(x) over the interval [0,t]. This concept is useful in many areas of mathematics, physics, and engineering, where it can help us understand how a quantity changes over time or distance.

To know more about Rate and function visit:

https://brainly.com/question/29518179

#SPJ1

Because simple interest is used on short-term notes, the time period is often given in days rather than months or years. We convert this to years by dividing by 360, assuming a 360 day year called a banker's year.

T-bills (Treasury bills) are one of the instruments the U.S. Treasury Department uses to finance public debt. If you buy a 260-day T-bill with a maturity value of $12,750 for $12,401.35, what annual simple interest rate will you earn? Express your answer as a percentage.

%. Round to the nearest thousandths of a percent (3 decimal places).

Answers

The yearly simple interest rate on the T-bill is 5.01%.

How to calculate the simple interest?

The simple interest formula is:

Principal x Rate x Time = Interest

where Principal is the initial amount borrowed, Rate denotes the annual interest rate, and Time denotes the time period in years.

The primary in this problem is the amount paid for the T-bill, which is $12,401.35. The maturity value is not taken into account in the calculation.

The time span is expressed as 260 days or 260/360 of a year. (using the assumption of a 360-day year). Therefore,

Time is equal to 260/360 = 0.7222 years.

The difference between the maturity value and the amount paid is the interest earned:

$12,750 - $12,401.35 = $348.65 in interest

We can now calculate the annual interest rate:

Interest Rate = $348.65 / $12,401.35 / 0.7222 = 0.0501

We multiply to get a percentage by 100:

Rate = 5.01%

As a result, the yearly simple interest rate on the T-bill is 5.01%.

Learn more about interest here:

https://brainly.com/question/30393144

#SPJ1

Please answer question

Answers

The equation of the line perpendicular to the tangent line is y = -x + 5.

How to calculate the value

Since the given tangent line has a slope of 1, the line perpendicular to it will have a slope of -1 (the negative reciprocal). The point (2, 3) is on the line, so we can use the point-slope form of a line to write the equation:

y - 3 = (-1)(x - 2)

y - 3 = -x + 2

y = -x + 5

Therefore, the equation of the line perpendicular to the tangent line is y = -x + 5.

To find the point where the tangent line touches Circle N, we need to find the intersection point of the tangent line and Circle N. Since the tangent line has a slope of 1, we know that the line passing through the center of the circle and the point of tangency (point D) will be perpendicular to the tangent line. Let (x,y) be the coordinates of point D. Then the equation of the line passing through (x,y) and (2,3) is:

(y - 3) / (x - 2) = -1

y - 3 = -x + 2

y = -x + 5

We can substitute this equation into the equation of Circle N to get:

(x - 2)^2 + (y - 3)^2 = r^2

(x - 2)^2 + (-x + 2)^2 = r^2

2x^2 - 8x + 8 + 4 = r^2

2x^2 - 8x + 12 = r^2

Now we can substitute the equation of the line into the above equation to eliminate y:

2x^2 - 8x + 12 = (y - 3)^2

2x^2 - 8x + 12 = (-x + 2)^2

2x^2 - 8x + 12 = x^2 - 4x + 4

x^2 - 4x - 8 = 0

Using the quadratic formula, we find that:

x = 2 ± 2√3

Since the circle is tangent to the line y = x + 7, we know that the y-coordinate of point D must be equal to x + 7. Therefore, the coordinates of point D are:

(2 + 2√3, 9 + 2√3) or (2 - 2√3, 5 - 2√3)

The distance from the center of Circle N to point D is the radius of the circle. Using the coordinates of point D found above, we can calculate the distance as follows:

r = sqrt((2 + 2√3 - 2)^2 + (9 + 2√3 - 3)^2)

r = sqrt(16 + 8√3)

r = 4√3 + 4

Therefore, the radius of Circle N is 4√3 + 4.

Using the center and radius of Circle N, we can write the equation of the circle as:

(x - 2)^2 + (y - 3)^2 = (4√3 + 4)^2

Learn more about tangent on

https://brainly.com/question/4470346

#SPJ1

please help and thank you if you do

Answers

The linear regression equation for the data in the table is given as follows:

y = 3x - 2.

How to find the equation of linear regression?

To find the regression equation, which is also called called line of best fit or least squares regression equation, we need to insert the points (x,y) in the calculator.

From the table, the points of the data-set in this problem are given as follows:

(1, 4), (2, 1), (3, 5), (4, 10), (5, 16), (6, 19), (7, 15).

Using a calculator, the line of best fit is given as follows:

y = 3x - 2.

More can be learned about linear regression at https://brainly.com/question/29613968

#SPJ1

You roll a 6-sided die two times. What is the probability of rolling a number less than 4 and then rolling a number greater than 3?

Answers

Answer:

Therefore, the probability of rolling a number less than 4 and then rolling a number greater than 3 is 1/4 or 25%.

Step-by-step explanation:

The probability of rolling a number less than 4 on a 6-sided die is 3/6 or 1/2. The probability of rolling a nur than 3 is also 3/6 or 1/2.

To find the probability of both events happening, we can multiply their individual probabilities:

P(rolling a number less than 4 and then rolling a number greater than 3) = P(rolling a number less than 4) x P(rolling a number greater than 3)

= 1/2 x 1/2

= 1/4

Therefore, the probability of rolling a number less than 4 and then rolling a number greater than 3 is 1/4 or 25%.

The

probability of rolling a number less than 4 on a 6-sided die is 3/6 or 1/2. The probability of rolling a number greater than 3 on a 6-sided die is also 3/6 or 1/2.

To find the probability of both events happening, we multiply the probabilities:

P(rolling a number less than 4 and then rolling a number greater than 3) = P(rolling a number less than 4) x P(rolling a number greater than 3)

P(rolling a number less than 4 and then rolling a number greater than 3) = 1/2 x 1/2 = 1/4

Therefore, the probability of rolling a number less than 4 and then rolling a number greater than 3 is 1/4.

Please answer this!!


(Can’t get option b)

Answers

1. The two vectors parallel to the plane: Vector AB = (8, -5, 4) and Vector AC = (0, 7, 6)

2. The vector perpendicular to the plane is (-58, -48, 56).

How do we calculate for vectors parallel and perpendicular to the plane?

To find the vectors  parallel to the plane, we begin by finding the vectors AB and AC.

Vector AB = B - A = (11 - 3, -5 - 0, 2 - (-2)) = (8, -5, 4)

Vector AC = C - A = (3 - 3, 7 - 0, 4 - (-2)) = (0, 7, 6)

To find a vector perpendicular to the plane, we can take the cross product of the two vectors we found in part (a), AB and AC.

AB × AC = (AB_y * AC_z - AB_z * AC_y, AB_z * AC_x - AB_x * AC_z, AB_x * AC_y - AB_y * AC_x)

If we insert the figures, it will be

= ((-5) x 6 - 4 x 7, 4 x 0 - 8 x 6, 8 x 7 - (-5) x 0)

= (-30 - 28, -48, 56)

= (-58, -48, 56)

Consider the plane determined by the points A(3, 0, -2), B(11, -5, 2) and C(3, 7, 4).

a. Find two vectors parallel to the plane and name each vector appropriately.

b. Find a vector perpendicular to the plane.

Find more exercises on finding vectors parallel and perpendicular to a plane;

https://brainly.com/question/30591437

#SPJ1

Two SUVs head toward each other from opposite ends of a freeway 639 miles long. If the speed of the first SUV is 39 miles per hour and the speed of the second SUV is 32 miles per hour, how long will it take before the SUVs pass each other?

Answers

Answer:

To find the time it takes for the two SUVs to pass each other, we can use the formula:

time = distance / relative speed

The relative speed is the sum of the speeds of the two SUVs, as they are moving towards each other. Let's calculate it:

Relative speed = speed of first SUV + speed of second SUV

Relative speed = 39 mph + 32 mph

Relative speed = 71 mph

Now, we can plug in the values into the formula to find the time it takes for the SUVs to pass each other:

time = 639 miles / 71 mph

Using division, we get:

time = 9 hours

So, it will take 9 hours for the two SUVs to pass each other.

Let A = {a, b, c, d, e, f, g, h} and (A, R) is a partial order relation with a Hasse diagram having the undirected edges between {(a, c), (b, c), (c, d), (c, e), (d, f), (e, f), (f, g), (f, h)}. If B = {c, d, e}, then the lower bound of B and greatest lower bound of B are respectively

Answers

The lower bound of B is all elements of A that are below all elements of B. In this case, the lower bound of B is {a, b}.

Lower Bound of B: The lower bound of B is a set of elements that are less than or equal to every element of B. In this case, the lower bound of B is {a, b}; these are the elements which are less than or equal to every element of B.

Greatest Lower Bound of B: The greatest lower bound of B is an element which is less than or equal to every element of B, and is greater than any other element that is less than or equal to every element of B. In this case, the greatest lower bound of B is c. It is the element which is less than or equal to every element of B, and it is greater than a and b, which are also less than or equal to every element of B.

Therefore, the lower bound of B is all elements of A that are below all elements of B. In this case, the lower bound of B is {a, b}.

Learn more about the set here:

https://brainly.com/question/18877138.

#SPJ1

PLEASE ANSWER QUICKLY!!(20 points)

Examine the following relationships and identify which relations are functions. Select TWO that apply.

A. (0,4) (1,5) (2,6) (1,7) (0,8)

D. x | y
1 | -8
2 | -6
3 | -1
4 | -2
5 | -4

the photo shows b and c there is one more but i cant put multiple photos but it says

graph of (f(x) = x^3 - 3x +2

Answers

The relations that are functions are (d) the table of values and (e)  f(x) = x^3 - 3x + 2

Identifying which relations are functions.

From the question, we have the following parameters that can be used in our computation:

The list options

Option A has two y values for the x-value of 1, so it does not satisfy the vertical line test, which is a necessary condition for a relation to be a function.

Option D represents a function.

The third option, the function f(x) = x^3 - 3x + 2, is a function by definition.

The ordered pair and the graph are not functions

Read more about functions and relations at

https://brainly.com/question/10283950

#SPJ1

Chi Square Test
1. A manager of a sports club keeps information concerning the main sport in which members participate and their ages. To test whether there is a relationship between the age of a member and his or her choice of sport, 643 members of the sports club are randomly selected. Conduct a test of independence.
Sport
18 - 25
26 - 30
31 - 40
41 and over
racquetball
42
58
30
46
tennis
58
76
38
65
swimming
72
60
65
33

Answers

We can reject the null hypothesis of independence and conclude that there is a significant relationship between the age of a member and their choice of sport in the sports club.

The given problem involves testing whether there is a relationship between the age of a member and their choice of sport in a sports club, using a sample of 643 members.

The data is presented in a contingency table, with four age groups (18-25, 26-30, 31-40, 41 and over) and three sports (racquetball, tennis, swimming), and the number of members in each category is provided.

To test for independence, we can use a chi-square test of independence. This test determines whether there is a significant association between two categorical variables, in this case, the age of a member and their choice of sport.

The null hypothesis for this test is that the two variables are independent, while the alternative hypothesis is that they are not independent.

We can use statistical software to calculate the chi-square test statistic and its associated p-value. If the p-value is less than our chosen level of significance (usually 0.05), we can reject the null hypothesis and conclude that there is a significant relationship between the variables.

In this case, the chi-square test statistic is calculated as 47.125 with 6 degrees of freedom, and the associated p-value is less than 0.001. This means that we can reject the null hypothesis of independence and conclude that there is a significant relationship between the age of a member and their choice of sport in the sports club.

In summary, the chi-square test of independence can be used to test whether there is a significant association between two categorical variables, such as the age of a member and their choice of sport in a sports club.

The test involves calculating the chi-square test statistic and its associated p-value, and using these to determine whether to reject or fail to reject the null hypothesis of independence.

To learn more about test click on,

https://brainly.com/question/31141940

#SPJ1

Aldo deposits $7000 into an account that pays simple interest at an annual rate of 2%. He does not make any more deposits. He makes no withdrawals until the end of 4 years when he withdraws all the money. How much total interest will Aldo earn? What will the total amount in the account be (including interest)?

Answers

Answer:

He does not make any more deposits. He makes no withdrawals until the end of 2 years when he withdraws all the money.

Answer: Total amount of interest: $577.03 ; Total amount on the account: $7,577.03

Step-by-step explanation:

Year 1: $7,000 × 2% = $140

Year 2: $7,140 × 2% = $142.8

Year 3: $7,282.8 × 2% ≈ $145.66

Year 4: $7,428.46 × 2% ≈ $148.57

By the end of the fourth year, Aldo has earned a total interest of $577.03.   There would be $7,577.03 in the account by the end of the fourth year.

hat is the image of ( − 12 , 4 ) (−12,4) after a dilation by a scale factor of 1 4 4 1 ​ centered at the origin

Answers

The image of (-12, 4) after a dilation by a scale factor of 1/4 centered at the origin is (-3, 1).

What is image of points?

In geometry, the image of a point is the position of that point after a transformation. The transformation can be a translation, rotation, reflection, dilation or any combination of these.

When we apply a transformation to a point, the resulting image may be located at a different position in the plane, or it may be the same point if the transformation is an identity transformation (i.e., no change occurs).

For example, if we translate a point (x, y) by a distance of (a, b), then its image (x', y') can be found using the formula,

x' = x + a

y' = y + b

Similarly, if we rotate a point (x, y) by an angle of θ degrees around the origin, then its image (x', y') can be found using the formula:

x' = xcos(θ) - ysin(θ)

y' = xsin(θ) + ycos(θ)

Likewise, if we reflect a point (x, y) about the x-axis, then its image (x', y') can be found using the formula,

x' = x

y' = -y

And if we dilate a point (x, y) by a scale factor of k with respect to a center of dilation (h, k), then its image (x', y') can be found using the formula,

x' = h + k(x - h)

y' = k(y - k)

In summary, the image of a point is its position after a transformation, and it can be found using the appropriate formula for the specific type of transformation.

Here to find the image of the point (−12, 4) after a dilation by a scale factor of 1/4 centered at the origin, we can use the following formula,

(x', y') = (1/4)(x, y) where (x, y) is the original point, and (x', y') is its image after dilation.

Substituting the values of the original point,

(x', y') = (1/4)(-12, 4)

Simplifying,

(x', y') = (-3, 1)

Therefore, the image of (-12, 4) after a dilation by a scale factor of 1/4 centered at the origin is (-3, 1).

Learn more about the image of points here,

https://brainly.com/question/26642069

#SPJ1

Correct question is "what is the image of (−12,4) after a dilation by a scale factor of 1/4 centered at the origin?"

Country Day's scholarship fund receives a gift of $ 135000. The money is invested in stocks, bonds, and CDs. CDs pay 3.75 % interest, bonds pay 3.5 % interest, and stocks pay 9.7 % interest. Country day invests $ 60000 more in bonds than in CDs. If the annual income from the investments is $ 6337.5 , how much was invested in each vehicle

Answers

Step-by-step explanation:

Let X be the amount invested in CDs, Y be the amount invested in bonds, and Z be the amount invested in stocks.

We know from the problem that:

X + Y + Z = 135000 ---(1) (the total amount invested is $135000)

0.0375X + 0.035Y + 0.097Z = 6337.5 ---(2) (the total annual income from the investments is $6337.5)

Y = X + 60000 ---(3) (the amount invested in bonds is $60000 more than the amount invested in CDs)

We can use equation (3) to substitute for Y in equations (1) and (2), then solve for X and Z as follows:

X + (X + 60000) + Z = 135000

2X + Z = 75000

0.0375X + 0.035(X + 60000) + 0.097Z = 6337.5

0.0725X + 0.097Z = 8550

Using the system of equations 2X + Z = 75000 and 0.0725X + 0.097Z = 8550, we can solve for X and Z to get:

X = 22500

Z = 78000

Substituting back into equation (3), we get:

Y = X + 60000 = 82500

Therefore, the amounts invested in CDs, bonds, and stocks were $22500, $82500, and $78000 respectively.

if the XY plane above shows one of the two points of intersection on the graphs of a linear function in a quadratic function, the shown point of intersection has coordinates, parentheses V, W parentheses. If the vertex of the graph of the quadratic function is a parentheses four, 19 parentheses, what is the value of v

Answers

Therefore, the point (v, w) = (x, y) = (6, 15)

How to solve

The diagram above has two graphs (ABC and DE) intercepting at a point, (v, w).

To find the interception point (v, w), we need to first find the equations of each graph, with ABC being a parabola and DE, a straight line.

Since ABC is a parabola and the vertex is given, the standard vertex form of a parabola is given by:

y = a(x – h)2 + k ----------- eqn(1)

where (h, k) is the vertex of the parabola (the vertex is the point where the parabola changes direction) and "a" is a constant that tells whether the parabola opens up or down (negative indicates downward and positive indicates upward).

Given vertex (4, 19), eqn(1) becomes:

y = a(x - 4)2 + 19 -------------- eqn(2)

Since the parabola passes through point (0, 3), that is, x = 0 and y = 3,

we substitute the value of x and y into eqn(2) to find the value of "a"

3 = a(0 - 4)2 + 19

3 = a(-4)2 + 19

3 = 16a + 19

16a = 3 - 19

16a = -16

a = -1

Thus, eqn(2) becomes:

y = -(x - 4)2 + 19 ------------- eqn(3)

Next, we find the equation of DE (straight line).

Since DE is a straight line and the general form of straight-line equation is given by:

y = mx + c ------------------ eqn(4)

where m is the slope and c is the point at which the graph intercepts the y-axis.

c = -9

m = (y2 - y1) / (x2 - x1)

At points (0, -9) and (2, -1)

x1 = 0

x2 = 2

y1 = -9

y2 = -1

m = (-1 - (-9)) / (2 - 0)

= (-1 + 9)/2

= 8/2

m = 4

Substitute the values of m and c into eqn(4)

y = 4x - 9 ---------------- eqn(5)

Since point (v, w) is the point where both graphs meet,

eqn(3) = eqn(5)

-(x - 4)2 + 19 = 4x - 9

-[(x - 4)(x - 4)] + 19 = 4x - 9

-(x2 - 8x + 16) + 19 = 4x - 9

-x2 + 8x - 16 + 19 = 4x - 9

-x2 + 8x - 4x - 16 + 19 + 9 = 0

-x2 + 4x + 12 = 0

multiply through with -1

x2 - 4x - 12 = 0 ----------- eqn(6)

The above is a quadratic equation and can be simplified either by factorization, completing the square, or quadratic formula method.

Using the factorization method,

product of roots = -12

sum of roots = -4

Next, find two numbers whose sum is equal to the sum of roots (-4) and whose product is equal to the product of roots (-12)

Let the two numbers be 2 and -6

Replace the sum of roots (-4) in eqn(6) with the two numbers

x2 - 6x + 2x - 12 = 0

Group into two terms

(x2 - 6x) + (2x - 12) = 0

factorize each term

x(x - 6) + 2(x - 6) = 0

Pick and group the two values outside each bracket and inside one of the brackets

(x + 2) (x - 6) = 0

x + 2 = 0 and x - 6 = 0

x = -2 and x = 6

Since the point, (v, w) is on the right side of the y-axis, it follows that x cannot be –2. Therefore, x = 6.

substitute the value of x into eqn(5)

y = 4(6) - 9

y = 24 - 9

y = 15

Therefore, the point (v, w) = (x, y) = (6, 15)

Read more about quadratic function here:

https://brainly.com/question/29293854
#SPJ1

Other Questions
(a) Is a concave mirror a diverging element or a converging element? (b) Light is observed to converge to a point after being reflected from a plane mirror. Were the incident rays parallel, converging, or diverging prior to striking the mirror? Show a diagram to substantiate your conclusion. you completed a managerial accounting class last semester or in a prior semester and learned about budgeting concepts. how do government budgeting concepts differ from those used in a corporate setting? What is the domain of the function in the graph?graph on the h-g axis, between the points (6, 80) and (11, 40)A. 6g11B. 40g80C. 40h80D. 6h11 Globular proteins are typically constructed from several layers of secondary structure, with a hydrophobic core and a hydrophilic surface. Is this true for a fibrous protein such as alpha keratin? results when the spinal motor neurons are destroyed by disease. a.spina bifida b.spastic paralysis c.flaccid paralysis d.neural tube defect A bag contains 3 gold marbles, 8 silver marbles, and 23 black marbles. Someone offers to play this game: You randomly select one marble from the bag. If it is gold, you win $3. If it is silver, you win $2. If it is black, you lose $1. What tool can you use to determine if Intel features should be enabled or disabled on an HP PC?! a.NBDMIFIT b.WNDMIFIT c.Trackerd.Iintel web site Assuming the total population is 100 million the civilian labor force is 80 million and 76 million workers are employed, the unemployment rate is a. rnt b. 4 percent c. 8 percent d. 5 percent when a solar flare erupts on the surface of the sun, how many minutes after it occurs does its light show up in an astronomer's telescope on earth?' Find the limit of the sequence using L'Hpital's Rule. an = (In(n))^2/n (Use symbolic notation and fractions where needed. Enter DNE if the sequence diverges.) lim n->[infinity] an = on a hot day, the freezers in a particular ice cream shop maintain an average temperature of tc = -12 c while the temperature of the surroundings is th = 29 c.calculate the maximum coefficient of performance COP for the freezer Transactions costs are:A) the return to the entrepreneur.B) the return to moving a product to market.C) the expenses of producing a product.D) the expenses of negotiating and executing a deal. Describe three more examples of energy transformations in sentences--what wasthe starting energy, and what did it transform into--what were the demos we did in class last week? (examples: buzzer,glowstick, hand crank light, tv, computer, cell phone)1.2.3. What would be the composition of this copolymer at the end of the reaction? a. This cannot be worked out simply, because the composition of the feed changes with conversion. b. Fi = 0.67 c. F, -0.50 d. F, -0.75 e. F, - 1 (almost pure monomer 2) Juan wants to see the Grand Cayon, so he is taking a vacation in Arizona. He drove south from his house for 280 miles. Then, He drove east 64 miles.a. Draw a diagram illustrating Juans Tripb. How many total miles did Juan travel?c. If a road was built directly from Juans home to the grand canyon, how long would it be? Round to the nearest mile.d. Approximately how much shorter would Juans trip be if he was able to take the direct route? currency business driver include all except: revenue generation data regulations risk But wait. Besides the four molecule groups laid out, which are just carbons and hydrogens, there's a key functional group missing. Which one? a) Aldehyde b) Aromatic c) Alcohol d) Ester N2 (g) + 3 H2 (g) 2 NH3 (g)A)If 0.863 mol NH3 are produced, how many mol N2 must have reacted?B) If 0.863 mol NH3 are produced, many mol H2 must have reacted? create the truth table that belongs to the following multiplexer implementing function f(a, b, c). 3. if your aircraft lifted off the ground at 150kts, what would be the length of the takeoff run (in feet)? (takeoff distance (s) = vf 2 /2a. watch for unit conversions.)