A sphere has a volume of 65.5 cubic inches. What is the diameter of the
sphere, to the nearest tenth of an inch?

Answers

Answer 1

Answer:

5.0 inches

Step-by-step explanation:

The formula for the volume of a sphere is:

[tex]\boxed{V=\dfrac{4}{3}\pi r^3}[/tex]

where r is the radius of the sphere.

Given a sphere has a volume of 65.5 cubic inches, substitute V = 65.5 into the formula and solve for the radius, r:

[tex]\begin{aligned}\implies \dfrac{4}{3}\pi r^3&=65.5\\\\3 \cdot \dfrac{4}{3}\pi r^3&=3 \cdot 65.5\\\\4\pi r^3&=196.5\\\\\dfrac{4\pi r^3}{4 \pi}&=\dfrac{196.5}{4 \pi}\\\\r^3&=15.636973...\\\\\sqrt[3]{r^3}&=\sqrt[3]{15.636973...}\\\\r&=2.50063840...\; \sf in\end{aligned}[/tex]

The diameter of a sphere is twice its radius.

Therefore, if the radius is 2.50063840... inches, then the diameter is:

[tex]\begin{aligned}\implies d&=2r\\&=2 \cdot 2.50063840...\\&=5.00127681...\\&=5.0\; \sf in\;(nearest\;tenth)\end{aligned}[/tex]

Therefore, the diameter of a sphere with a volume of 65.5 cubic inches is 5.0 inches, to the nearest tenth of an inch.

Answer 2

Answer:

5 cm

Step-by-step explanation:

The formula to find the volume of a sphere is:

[tex]\sf V =\frac{4}{3} \pi r^3[/tex]

Here,

V ⇒ volume ⇒ 65.5 cm³

r ⇒ radius

Let us find the value of r.

[tex]\sf V =\frac{4}{3} \pi r^3\\\\65.5=\frac{4}{3} \pi r^3\\\\65.5*3=4 \pi r^3\\\\196.5=4 \pi r^3\\\\\frac{196.5}{4} =\pi r ^3\\\\49.125=\pi r^3\\\\\frac{49.125}{\pi} = r^3\\\\15.63=r^3\\\\\sqrt[3]{15.63} =r\\\\2.5=r[/tex]

Let us find the diameter now.

d = 2r

d = 2 × 2.5

d = 5 cm


Related Questions

let be a random variable with f(x)=kx^4 pdf find e(x) .

Answers

The expected value of X is then calculated as E(X) = ∫x f(x) dx from 0 to 1, which simplifies to E(X) = k∫x⁵ dx from 0 to 1. Evaluating this integral gives us the expected value of X, which is equal to 5/6.

The expected value of the random variable X with a probability density function (pdf) of f(x) = kx⁴ is calculated as E(X) = ∫x f(x) dx from negative infinity to positive infinity.

Integrating f(x) from negative infinity to positive infinity gives us the normalizing constant k, which is equal to 1/∫x⁴ dx from 0 to 1. Simplifying this gives us k = 5.

The expected value of X is then calculated as E(X) = ∫x f(x) dx from 0 to 1, which simplifies to E(X) = k∫x⁵ dx from 0 to 1. Evaluating this integral gives us E(X) = k/6, which is equal to 5/6. Therefore, the expected value of X with f(x) = kx⁴ pdf is 5/6.

In summary, the expected value of a random variable X with a probability density function (pdf) of f(x) = kx⁴ is calculated by integrating x f(x) from negative infinity to positive infinity. Integrating f(x) from negative infinity to positive infinity gives us the normalizing constant k, which is equal to 1/∫x⁴ dx from 0 to 1.

To know more about probability density function click on below link:

https://brainly.com/question/30403935#

#SPJ11

A student uses Square G and Square F, shown below, in an attempt to prove the Pythagorean theorem. Square G and Square F both have side lengths equal to (a + b).

The student's work is shown in the photo attached.

What error did the student make?

A. In Step 1, the areas of the squares are different because the squares are partitioned into different shapes.
B. In Step 2, the area of Square G should be equal to a? + 2ab + b2 because there are 2 rectangles with sides lengths a and b.
C. In Step 3, the area of Square F should be equal to a? + ab + b? because there are 2 right triangles with sides lengths a and b.
D. In Step 5, ab should be subtracted from the left side of the equation and 2ab should be subtracted from the right side.

Answers

Answer:

the answer is b

Step-by-step explanation:

Due to the presence of two rectangles with sides of lengths a and b, Square G's area in Step 2 should equal [tex]a^2+2ab+b^2[/tex].

What is Pythagorean theorem?

According to the Pythagorean Theorem, the squares on the hypotenuse of a right triangle, or, in conventional algebraic notation, [tex]a^2+b^2[/tex], are equal to the squares on the legs. The Pythagorean Theorem states that the square on a right-angled triangle's hypotenuse is equal to the total number of the squares on its other two sides.

The Pythagoras theorem, often known as the Pythagorean theorem, explains the relationship between each of the sides of a shape with a right angle. According to the Pythagorean theorem, the square root of a triangle's the hypotenuse is equal to the sum of the squares of its other two sides.

Area of square [tex]G=a^2+2ab+b^2[/tex]

[tex]a^2+2ab+b^2=c^2+2ab\\\\a^2+2ab-2ab+b^2=c^2+2ab-2ab\\\\a^2+b^2=c^2[/tex]

[ The Pythagorean theorem]

To know more about Pythagorean Theorem, visit:

https://brainly.com/question/343682

#SPJ1

find the exact location of all the relative and absolute extrema of the function. (order your answers from smallest to largest x.) f(x) = 5x2 − 20x 5 with domain [0, 3]

Answers

The exact locations of the extrema are:
Absolute maximum: (0, 5)
Relative minimum: (2, -15)
Absolute minimum: (3, -10)

To find the extrema of the function f(x) = 5x² - 20x + 5 with domain [0, 3], we first need to find its derivative:
f'(x) = 10x - 20

Setting this equal to zero to find critical points, we get:
10x - 20 = 0
x = 2

This critical point lies within the domain [0, 3], so we need to check if it is a relative or absolute extrema.

To do this, we need to look at the sign of the derivative around x = 2.

For x < 2, f'(x) < 0, which means the function is decreasing.
For x > 2, f'(x) > 0, which means the function is increasing.

Therefore, we can conclude that x = 2 is a relative minimum.

Next, we need to check the endpoints of the domain [0, 3].

To do this, we need to evaluate the function at x = 0 and x = 3.

f(0) = 5(0)² - 20(0) + 5 = 5
f(3) = 5(3)² - 20(3) + 5 = -10

Since f(0) > f(3), we can conclude that f(x) has an absolute maximum at x = 0 and an absolute minimum at x = 3.

Therefore, the exact locations of the extrema, ordered from smallest to largest x, are:
Absolute maximum: (0, 5)
Relative minimum: (2, -15)
Absolute minimum: (3, -10)

Learn more about extrema:

https://brainly.com/question/1938915

#SPJ11

PLEASE HELP!!!

The side lengths and areas of some regular polygons are shown in the table below which expressions can be used to find the area in square units of a similar polygon with a side length of N units?

Answers

n^2

all the numbers on the right are squares of the numbers on the left

squares means the number times the same number

Answer:

Number 2, [tex]n^{2}[/tex]

Step-by-step explanation:

The table shows at the top of the screen has a very specific pattern, when comparing side length and area.

When the side length is 4 the area is 16

When the side length is 5 the area is 25

What is happening?

They are being squared(Multipled by itself).

See here:

4*4 = 16

5*5 = 25

Understand how the table is working?

The table is a side to area comparision of a polygon.

The question asks to find the area of a similar polygon, if a side length is n.

Because we are squaring the side length, the answer is:

[tex]n^{2}[/tex]

Bisecting Bakery sells cylindrical round cakes. The most popular cake at the bakery is the red velvet cake. It has a radius of 15 centimeters and a height of 12 centimeters.

If everything but the circular bottom of the cake was iced, how many square centimeters of icing is needed for one cake? Use 3.14 for π and round to the nearest square centimeter.

810 cm2
585 cm2
2,543 cm2
1,837 cm2

Answers

The surface area of the icing on the cake can be found by calculating the lateral surface area of the cylinder. The formula for the lateral surface area of a cylinder is:

Lateral Surface Area = 2πrh

where r is the radius of the cylinder and h is the height of the cylinder.

In this problem, the radius of the cake is 15 cm and the height of the cake is 12 cm. Therefore, the lateral surface area of the cake is:

Lateral Surface Area = 2π(15 cm)(12 cm)
Lateral Surface Area = 2π(180 cm²)
Lateral Surface Area = 360π cm²
Lateral Surface Area ≈ 1131 cm²

So, the amount of icing needed for one cake is approximately 1,131 square centimeters. However, we need to subtract the area of the circular bottom of the cake from this value. The area of the circular bottom of the cake is:

Area of circular bottom = πr²
Area of circular bottom = π(15 cm)²
Area of circular bottom = 225π cm²
Area of circular bottom ≈ 706.5 cm²

Therefore, the amount of icing needed for one cake is approximately:

1131 cm² - 706.5 cm² ≈ 424.5 cm²

Rounding this value to the nearest square centimeter, we get:

425 cm²

So, the answer is not listed. The amount of icing needed for one cake is approximately 425 square centimeters.

How can we express (logₓy)², or log of y to the base x the whole squared? Is it the same as log²ₓy?

Answers

The equivalent expression of the logarithmic expression (logₓy)² is log²ₓy

Rewriting the logarithmic expression

From the question, we have the following parameters that can be used in our computation:

(logₓy)²

The above expression is pronounced

log y to the base of x all squared

When the expression is expanded, we have the following

(logₓy)² = (logₓy) * (logₓy)

Evaluating the expression, we have

(logₓy)² = log²ₓy

Hence, the equivalent expression of the expression (logₓy)² is log²ₓy


Read more about logarithmic expression at

https://brainly.com/question/28041634

#SPJ1

The sum of two integers is -1500 one of the number is 599. Find the other numbers.

Answers

Answer:

∴ The other integer is -2099.

Step-by-step explanation:
Let the unknown number be x,

599+x=(-1500)

x=(-1500)-599

x=(-2099)

consider the parametric curve given by the equations x(t)=t2 13t−40 y(t)=t2 13t 1 how many units of distance are covered by the point p(t)=(x(t),y(t)) between t=0 and t=7 ?

Answers

Using a numerical integration method or a calculator, the value of the integral can be found to be approximately 62.7 units. So, point P(t) covers about 62.7 units of the distance between t = 0 and t = 7.

To find the distance covered by the point P(t) = (x(t), y(t)) between t = 0 and t = 7, we need to calculate the arc length of the parametric curve given by the equations x(t) = t^2 + 13t - 40 and y(t) = t^2 + 13t + 1.

Step 1: Find the derivatives of x(t) and y(t) with respect to t.
dx/dt = 2t + 13
dy/dt = 2t + 13

Step 2: Compute the square of the derivatives and add them together.
(dx/dt)^2 + (dy/dt)^2 = (2t + 13)^2 + (2t + 13)^2 = 2 * (2t + 13)^2

Step 3: Take the square root of the result obtained in step 2.
sqrt(2 * (2t + 13)^2)

Step 4: Integrate the result from step 3 with respect to t from 0 to 7.
Arc length = ∫[0,7] sqrt(2 * (2t + 13)^2) dt

Using a numerical integration method or a calculator, the value of the integral can be found to be approximately 62.7 units. So, the point P(t) covers about 62.7 units of distance between t = 0 and t = 7.

to learn more about equations click here:

https://brainly.com/question/9312365

#SPJ11

In a random sample of 80 bicycle wheels, 37 were found to have critical flaws that would result in damage being done to the bicycle. Determine the lower bound of a two-sided 95% confidence interval for p, the population proportion of bicycle wheels that contain critical flaws. Round your answer to four decimal places.

Answers

The Confidence interval for the population proportion p is approximately 0.4832

How to determine the lower bound of a  confidence interval for the population proportion?

To determine the lower bound of a two-sided 95% confidence interval for the population proportion p, we can use the formula for the confidence interval of a proportion.

The formula for the confidence interval of a proportion is given by:

CI = p ± zsqrt((p(1-p))/n)

where:

CI = confidence interval

p = sample proportion

z = z-score corresponding to the desired confidence level

n = sample size

Given:

Sample proportion (p) = 37/80 = 0.4625 (since 37 out of 80 bicycle wheels were found to have critical flaws)

Sample size (n) = 80

Desired confidence level = 95%

We need to find the z-score corresponding to a 95% confidence level. For a two-sided confidence interval, we divide the desired confidence level by 2 and find the z-score corresponding to that area in the standard normal distribution table.

For a 95% confidence level, the area in each tail is (1 - 0.95)/2 = 0.025. Using a standard normal distribution table or a z-score calculator, we can find that the z-score corresponding to an area of 0.025 is approximately -1.96.

Now we can plug in the values into the formula and solve for the lower bound of the confidence interval:

CI = 0.4625 ± (-1.96)sqrt((0.4625(1-0.4625))/80)

Calculating the expression inside the square root first:

(0.4625*(1-0.4625)) = 0.2497215625

Taking the square root of that:

sqrt(0.2497215625) ≈ 0.4997215107

Substituting back into the formula:

CI = 0.4625 ± (-1.96)*0.4997215107

Now we can calculate the lower bound of the confidence interval:

Lower bound = 0.4625 - (-1.96)*0.4997215107 ≈ 0.4625 + 0.979347415 ≈ 1.4418 (rounded to four decimal places)

Therefore, the lower bound of the two-sided 95% confidence interval for the population proportion p is approximately 0.4418 (rounded to four decimal places).

Learn more about Confidence interval

brainly.com/question/29680703

Assuming that n,n2, find the sample sizes needed to estimate (P1-P2) for each of the following situations a.A margin of error equal to 0.11 with 99% confidence. Assume that p1 ~ 0.6 and p2 ~ 0.4. b.A 90% confidence interval of width 0.88. Assume that there is no prior information available to obtain approximate values of pl and p2 c.A margin of error equal to 0.08 with 90% confidence. Assume that p1 0.19 and p2 0.3. P2- a. What is the sample size needed under these conditions? (Round up to the nearest integer.)

Answers

The following parts can  be answered by the concept from Standard deviation.

a. We need a sample size of at least 121 for each group.

b. We need a sample size of at least 78 for each group.

c.  We need a sample size of at least 97.48 for each group.

To find the sample size needed to estimate (P1-P2) for each of the given situations, we can use the following formula:

n = (Zα/2)² × (p1 × q1 + p2 × q2) / (P1 - P2)²

where:
- Zα/2 is the critical value of the standard normal distribution at the desired confidence level
- p1 and p2 are the estimated proportions in the two populations
- q1 and q2 are the complements of p1 and p2, respectively (i.e., q1 = 1 - p1 and q2 = 1 - p2)
- (P1 - P2) is the desired margin of error

a. For a margin of error equal to 0.11 with 99% confidence, assuming p1 ~ 0.6 and p2 ~ 0.4, we have:

Zα/2 = 2.576 (from standard normal distribution table)
p1 = 0.6, q1 = 0.4
p2 = 0.4, q2 = 0.6
(P1 - P2) = 0.11

Plugging in the values, we get:

n = (2.576)² × (0.6 × 0.4 + 0.4 × 0.6) / (0.11)²
n ≈ 120.34

Therefore, we need a sample size of at least 121 for each group.

b. For a 90% confidence interval of width 0.88, assuming no prior information is available to obtain approximate values of p1 and p2, we have:

Zα/2 = 1.645 (from standard normal distribution table)
(P1 - P2) = 0.88
Since we have no information about p1 and p2, we can assume them to be 0.5 each (which maximizes the sample size and ensures a conservative estimate).

Plugging in the values, we get:

n = (1.645)² × (0.5 × 0.5 + 0.5 × 0.5) / (0.88)²
n ≈ 77.58

Therefore, we need a sample size of at least 78 for each group.

c. For a margin of error equal to 0.08 with 90% confidence, assuming p1 = 0.19 and p2 = 0.3, we have:

Zα/2 = 1.645 (from standard normal distribution table)
q1 = 0.81
q2 = 0.7
(P1 - P2) = 0.08

Plugging in the values, we get:

n = (1.645)² × (0.19 × 0.81 + 0.3 × 0.7) / (0.08)²
n ≈ 97.48

Therefore, we need a sample size of at least 98 for group 1. For group 2, we can use the same sample size as group 1, or we can adjust it based on the expected difference between p1 and p2 (which is not given in this case).

To learn more about Standard deviation here:

brainly.com/question/12402189#

#SPJ11

The following parts can  be answered by the concept from Standard deviation.

a. We need a sample size of at least 121 for each group.

b. We need a sample size of at least 78 for each group.

c.  We need a sample size of at least 97.48 for each group.

To find the sample size needed to estimate (P1-P2) for each of the given situations, we can use the following formula:

n = (Zα/2)² × (p1 × q1 + p2 × q2) / (P1 - P2)²

where:
- Zα/2 is the critical value of the standard normal distribution at the desired confidence level
- p1 and p2 are the estimated proportions in the two populations
- q1 and q2 are the complements of p1 and p2, respectively (i.e., q1 = 1 - p1 and q2 = 1 - p2)
- (P1 - P2) is the desired margin of error

a. For a margin of error equal to 0.11 with 99% confidence, assuming p1 ~ 0.6 and p2 ~ 0.4, we have:

Zα/2 = 2.576 (from standard normal distribution table)
p1 = 0.6, q1 = 0.4
p2 = 0.4, q2 = 0.6
(P1 - P2) = 0.11

Plugging in the values, we get:

n = (2.576)² × (0.6 × 0.4 + 0.4 × 0.6) / (0.11)²
n ≈ 120.34

Therefore, we need a sample size of at least 121 for each group.

b. For a 90% confidence interval of width 0.88, assuming no prior information is available to obtain approximate values of p1 and p2, we have:

Zα/2 = 1.645 (from standard normal distribution table)
(P1 - P2) = 0.88
Since we have no information about p1 and p2, we can assume them to be 0.5 each (which maximizes the sample size and ensures a conservative estimate).

Plugging in the values, we get:

n = (1.645)² × (0.5 × 0.5 + 0.5 × 0.5) / (0.88)²
n ≈ 77.58

Therefore, we need a sample size of at least 78 for each group.

c. For a margin of error equal to 0.08 with 90% confidence, assuming p1 = 0.19 and p2 = 0.3, we have:

Zα/2 = 1.645 (from standard normal distribution table)
q1 = 0.81
q2 = 0.7
(P1 - P2) = 0.08

Plugging in the values, we get:

n = (1.645)² × (0.19 × 0.81 + 0.3 × 0.7) / (0.08)²
n ≈ 97.48

Therefore, we need a sample size of at least 98 for group 1. For group 2, we can use the same sample size as group 1, or we can adjust it based on the expected difference between p1 and p2 (which is not given in this case).

To learn more about Standard deviation here:

brainly.com/question/12402189#

#SPJ11

(1 point) let b be the basis of r2 consisting of the vectors {[42],[−15]}, and let c be the basis consisting of {[−23],[1−2]}. find the change of coordinates matrix p from the basis b to the basis c.

Answers

The change of coordinates matrix P from the basis B to the basis C is given by P = [[-23/42, -15/42], [-46/42, 30/42]], which simplifies to P = [[-23/42, -5/14], [-23/21, 5/7]].

To find the change of coordinates matrix P from basis B to basis C, follow these steps:

1. Write the basis vectors of B and C as column vectors: B = [[42], [-15]] and C = [[-23], [1-2]].


2. Find the inverse of the matrix formed by basis B, B_inv = (1/determinant(B)) * adjugate(B). The determinant of B is -630, so B_inv = (1/-630) * [[-15, 15], [-42, 42]] = [[15/630, -15/630], [42/630, -42/630]] = [[1/42, -1/42], [2/30, -2/30]].


3. Multiply the matrix B_inv with matrix C to obtain the change of coordinates matrix P: P = B_inv * C = [[1/42, -1/42], [2/30, -2/30]] * [[-23], [1-2]] = [[-23/42, -15/42], [-46/42, 30/42]] = [[-23/42, -5/14], [-23/21, 5/7]].

To know more about column vectors click on below link:

https://brainly.com/question/29314253#

#SPJ11

find the area of the figure below

Answers

The area of the figure in this problem is given as follows:

140 yd².

How to obtain the area of the figure?

The figure in the context of this problem is a composite figure, hence the area is the sum of the areas of all the parts that compose the figure.

The figure in this problem is composed as follows:

Square of side length 10 yd.Right triangle of dimensions 8 yd and 10 yd.

The area of each part of the figure is given as follows:

Square: 10² = 100 yd².Right triangle: 0.5 x 8 x 10 = 40 yd².

Hence the total area of the figure is given as follows:

100 + 40 = 140 yd².

More can be learned about the area of a figure at https://brainly.com/question/24164701

#SPJ1

determine whether the geometric series is convergent or divergent. (4 − 7 49 4 − 343 16 )

Answers

The common ratio 'r' is not constant, meaning that the series is not geometric.

Define the term geometric series?

Each term in a geometric series is created by multiplying the previous term by a fixed constant known as the common ratio.

To determine if the geometric series (4, -7, 49, -343, 16) is convergent or divergent, we need to find the common ratio 'r' of the series.

r = (next term) / (current term)

r = (-7) / 4 = -1.75

r = 49 / (-7) = -7

r = (-343) / 49 = -7

r = 16 / (-343) = -0.0466...

We can see that the common ratio 'r' is not constant, meaning that the series is not geometric, and therefore we cannot determine if it is convergent or divergent.

To know more about divergent, visit:

https://brainly.com/question/15415793

#SPJ1

A new car is purchased for 16600 dollars. The value of the car depreciates at 9.75% per year. What will the value of the car be, to the nearest cent, after 8 years?

please show work

Answers

Answer:

7306.1

Step-by-step explanation:

The value of the car is $7306.10 after 8 years.

Given

A new car is purchased for 16600 dollars.

The value of the car depreciates at 9.75% per year.

What is depreciation?

Depreciation denotes an accounting method to decrease the cost of an asset.

To get the depreciation of a partial year, you need to calculate the depreciation a full year first.

The formula to calculate depreciation is given by;

V= P( 1-r )^t

Where V represents the depreciation r is the rate of interest and t is the time.

Hence, the value of the car is $7306.10 after 8 years.

To know more about Depreciation click the link given below.

brainly.com/question/13734742

Pleaseee help

Lisa has collected data to find that the number of pages per book on a book shelf has a normal distribution. What is the probability that a randomly selected book has fewer than 170 pages if the mean (k) is 195 pages and the standard deviation (o) is 25 pages? Use the empirical rule. Enter your answer as a percent rounded to two decimal places if necessary.

Answers

Answer:

Approximately 16%

Step-by-step explanation:

To solve this problem using the empirical rule, we need to first standardize the value of 170 pages using the mean and standard deviation provided:

z = (x - k) / o

where x is the value we want to find the probability for (170 pages), k is the mean (195 pages), and o is the standard deviation (25 pages).

So,

z = (170 - 195) / 25 = -1

Now, we can use the empirical rule, which states that for a normal distribution:

- About 68% of the data falls within 1 standard deviation of the mean

- About 95% of the data falls within 2 standard deviations of the mean

- About 99.7% of the data falls within 3 standard deviations of the mean

Since we know that the distribution is normal, and we want to find the probability that a randomly selected book has fewer than 170 pages (which is one standard deviation below the mean), we can use the empirical rule to estimate this probability as follows:

- From the empirical rule, we know that about 68% of the data falls within 1 standard deviation of the mean.

- Since the value of 170 pages is one standard deviation below the mean, we can estimate that the probability of randomly selecting a book with fewer than 170 pages is approximately 16% (which is half of the remaining 32% outside of one standard deviation below the mean).

Therefore, the probability that a randomly selected book has fewer than 170 pages is approximately 16%.

When finding a confidence interval for a population mean based on a sample of size 8, which assumption is made? O A The sampling distribution of z is normal. O B There is no special assumption made. O C The population standard deviation, σ is known. O D The sampled population is approximately normal

Answers

When finding a confidence interval for a population mean based on a sample of size 8, the assumption made is that the sampled population is approximately normal.

When finding a confidence interval for a population mean based on a sample of size 8, the assumption made is that the sampled population is approximately normal. This assumption is crucial because it ensures that the sampling distribution of the sample mean is normal or nearly normal, allowing for accurate confidence interval calculations.

This assumption allows us to use the central limit theorem, which states that the distribution of sample means will approach a normal distribution as the sample size increases. This in turn allows us to use a t-distribution to calculate the confidence interval.

Option A is incorrect because the sampling distribution of z is used when the population standard deviation is known, which is not the case in this scenario. Option B is also incorrect because assumptions are made in statistical inference. Option C is incorrect because it assumes that the population standard deviation is known, which is not always the case.

Know more about confidence interval here:

https://brainly.com/question/20309162

#SPJ11

The rear tire on a tractor has a radius of 8 feet. What is the area, in square feet, of the tire rounded to the nearest tenth?

Answers

The area of the rear tire of the tractor is A = 201.1 feet²

Given data ,

The area of a circle is given by the formula A = πr², where r is the radius of the circle.

Given that the radius of the tractor tire is 8 feet, we can substitute this value into the formula to calculate the area:

A = π(8²)

Using the value of π as approximately 3.14159265359

A ≈ 3.14159265359 x (8²)

A = 3.14159265359 x 64

A ≈ 201.061929829746

Rounding to the nearest tenth, we get:

A ≈ 201.1 feet²

Hence , the area of the tractor tire is approximately 201.1 feet²

To learn more about circle click :

https://brainly.com/question/28391204

#SPJ1

The volume of a rectangular prism is given as 6x^(3)+96x^(2)+360x cubic inches. What is one possible expression for the height of the prism?

Answers

Answer:

6x(x+6)(x+10)

Step-by-step explanation:

6x^(3)+96x^(2)+360x

x6(x^2+16x+60)

6x(x+6((x+10)

Which graph represents the function f(x) = -3 -2?

Answers

The fourth graph represents the functions f(x)=-3ˣ-2

We can plug in the y intercept to find which graph has the correct one.

x = 0 is y intercept

Thus function f(0)=-3⁰-2

f(0)=-1-2

f(0)=-3

At this point we known the y intercept is -3 so both graph in the left is considerable.

Notice that the base is the negative, thus the graph would goes down. Therefore the bottom right would be correct.

Hence, the fourth graph represents the functions f(x)=-3ˣ-2

To learn more on Functions click:

https://brainly.com/question/30721594

#SPJ1

45.1 devided by 1,000

Answers

The answer will be 0.0451
Answer: 22.172949 I think

The hypotenuse of a right triangle measures 10 cm and one of its legs measures 7 cm. Find the measure of the other leg. If necessary, round to the nearest tenth.

Answers

The length of the other leg is approximately 7.1 cm.

How to find the measure of the other leg?

Let's use the Pythagorean theorem to solve this problem, which states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

In this case, let's call the length of the other leg "x". Then, we have:

[tex]10^{2}[/tex] = [tex]7^{2}[/tex] + [tex]x^{2}[/tex]

Simplifying and solving for x, we get:

100 = 49 + [tex]x^{2}[/tex]

[tex]x^{2}[/tex] = 51

x ≈ 7.1

Therefore, the length of the other leg is approximately 7.1 cm.

to know more about length

brainly.com/question/30100801

#SPJ1

12. Find the rate of change for the linear function represented in the table.

Time (hr) Cost ($)
x y
1 55.00
1.5 73.50
2 92.00
2.5 110.50

Answers

the rate of change is 18.5.

loftus (1974) gave subjects a description of an armed robbery. eighteen percent presented with only circumstantial evidence convicted the defendant. when an eyewitness' identification was provided in addition to the circumstantial evidence, 72% convicted the defendant. what happened when mock jurors were told that the eyewitness had poor eyesight and wasn't wearing his glasses?

Answers

The jurors may perceive the identification as less reliable, leading them to rely more on the circumstantial evidence and be less certain about convicting the defendant.

In Loftus' (1974) study on the effects of eyewitness testimony on jury decision-making, subjects were presented with a description of an armed robbery. When only circumstantial evidence was provided, 18% of the subjects convicted the defendant. However, when an eyewitness identification was added to the circumstantial evidence, the conviction rate increased to 72%.

When the mock jurors were told that the eyewitness had poor eyesight and wasn't wearing his glasses, it is likely that the conviction rate would decrease as this information weakens the credibility of the eyewitness testimony. The jurors may perceive the identification as less reliable, leading them to rely more on the circumstantial evidence and be less certain about convicting the defendant.

Learn more about circumstantial evidence here,

https://brainly.com/question/30802575

#SPJ11

Customers can be served by any of three servers, where the service times of server i are exponentially distributed with rate mu_i, i = 1, 2, 3. Whenever a server becomes free, the customer who has been waiting the longest begins service with that server. a. If you arrive to find all three servers busy and no one waiting, find the expected time until you depart the system. b. If you arrive to find all three servers busy and one person waiting, find the expected time until you depart the system.

Answers

a. The expected time until departure from the system when arriving to find all three servers busy and no one waiting can be calculated as (3/2(mu_1+mu_2+mu_3)).

b. The expected time until departure from the system when arriving to find all three servers busy and one person waiting can be calculated as (5/2(mu_1+mu_2+mu_3)).

a. In order to calculate the expected time until departure from the system when arriving to find all three servers busy and no one waiting, we can use the following formula:

E(T) = 1/3 * [1/mu_1 + 1/mu_2 + 1/mu_3 + (1/(mu_1+mu_2+mu_3))]

where E(T) represents the expected time until departure and mu_1, mu_2, and mu_3 represent the service rates of each server.

By substituting the given values into the formula, we get:

E(T) = 1/3 * [1/mu_1 + 1/mu_2 + 1/mu_3 + (1/(mu_1+mu_2+mu_3))]

= 1/3 * [1/μ_1 + 1/μ_2 + 1/μ_3 + (1/(μ_1+μ_2+μ_3))]

= (1/μ_1 + 1/μ_2 + 1/μ_3 + (1/(μ_1+μ_2+μ_3)))/3

Simplifying this expression gives us:

E(T) = (3/2(mu_1+mu_2+mu_3))

Therefore, the expected time until departure from the system when arriving to find all three servers busy and no one waiting is (3/2(mu_1+mu_2+mu_3)).

b. When one person is already waiting in the system, the expected time until departure can be calculated using the following formula:

E(T) = 1/2(mu_1+mu_2+mu_3) + 1/μ_min

where μ_min is the smallest service rate among the three servers.

The reasoning behind this formula is that the customer who has been waiting the longest will begin service immediately when a server becomes free, while the customer who arrived most recently will wait until all the other customers ahead of them have been served.

Therefore, the expected time until departure in this case is the expected waiting time for the customer who has been waiting the longest plus the expected service time for the next customer in line.

Since the service times are exponentially distributed, the expected service time for a server with rate mu is 1/mu. Therefore, the expected service time for the customer who is next in line is 1/μ_min.

By substituting the given values into the formula, we get:

E(T) = 1/2(mu_1+mu_2+mu_3) + 1/μ_min

= (μ_min/2(μ_1+μ_2+μ_3)) + (1/μ_min)

Therefore, the expected time until departure from the system when arriving to find all three servers busy and one person waiting is (μ_min/2(μ_1+μ_2+μ_3)) + (1/μ_min), or equivalently, (5/2(mu_1+mu_2+mu_3)) if we substitute μ_min = min(μ_1, μ_2, μ_3).

For more questions like Customers click the link below:

https://brainly.com/question/13735743

#SPJ11

find a particular solution to ″ 4=8sin(2t)

Answers

A particular solution for the equation 4 = 8sin(2t) is t = π/12.

find a particular solution to the equation 4 = 8sin(2t). Here are the steps to solve for the particular solution:

1. Start with the given equation: 4 = 8sin(2t)

2. To isolate sin(2t), divide both sides by 8:
  (4/8) = sin(2t)

3. Simplify the fraction on the left side of the equation:
  1/2 = sin(2t)

4. Now, we need to find the particular value of t that satisfies the equation. Take the inverse sine (sin^(-1)) of both sides:
  t = (1/2)sin^(-1)(1/2)

5. Evaluate sin^(-1)(1/2):
  t = (1/2)(π/6)

6. Simplify the equation to find t

he particular solution:
  t = π/12

So, a particular solution for the equation 4 = 8sin(2t) is t = π/12.

Visit here to learn more about  equation:

brainly.com/question/29657983

#SPJ11

A blueprint for a cottage has a scale of 1:40 one room measures 3.4 m by 4.8 . calculate the dimensions of the room on the blueprint.

​I need students to solve it, with operations​

Answers

The actual dimension of the room on the blueprint is 136 meters by 192 meters


Calculating the dimensions of the room on the blueprint.

From the question, we have the following parameters that can be used in our computation:

Scale ratio = 1 : 40

This means that the ratio of the scale to the actual is 1:40

Also, from the question. we have

One room measures 3.4 m by 4.8 .

This means that

Actual length = 40 * 3.4 meters

Actual width = 40 * 4.8 meters

Using the above as a guide, we have the following:

We need to evaluate the products to determine the actual dimensions

So, we have

Actual length = 136 meters

Actual width = 192 meters

Hence, the actual dimension is 136 meters by 192 meters

Read more about ratio at

brainly.com/question/21003411

#SPJ1

(1 point) consider the basis b of r2 consisting of vectors [−4−5] and [12]. find x⃗ in r2 whose coordinate vector relative to the basis b is [x⃗ ]b=[2−4].

Answers

X in r2 whose coordinate vector relative to the basis b is [1/5 2/15].

To find x⃗ in r2 whose coordinate vector relative to the basis b is [2 -4], we first need to express the basis vectors as a matrix.

The matrix for the basis b is:
[ -4 12
 -5  0 ]

To find x⃗, we can use the formula:
x⃗ = [x⃗ ]b * [B]^-1
where [B]^-1 is the inverse of the matrix for the basis b.

To find the inverse of the matrix for the basis b, we can use the formula:
[B]^-1 = (1/60) * [0 12
                    5 -4 ]

Plugging in the values, we get:
x⃗ = [2 -4] * (1/60) * [0 12
                              5 -4 ]
  = (1/60) * [(-8)+(20) (24)+(-16)]
  = (1/60) * [12 8]
  = [1/5 2/15]

Know more about coordinate vector here:

https://brainly.com/question/30662121

#SPJ11

for a second-order homogeneous linear ode, an initial value problem consists of an equation and two initial conditions. True False

Answers

The given statement "For a second-order homogeneous linear ordinary differential equation (ODE), an initial value problem (IVP) consists of an equation and two initial conditions" is True because  A second-order homogeneous linear ODE is an equation of the form ay''(t) + by'(t) + cy(t) = 0, where y(t) is the dependent variable, t is the independent variable, and a, b, and c are constants.

The equation is homogeneous because the right-hand side is zero, and it is linear because y(t), y'(t), and y''(t) are not multiplied or divided by each other or their higher powers. An IVP for this type of equation requires two initial conditions because the second-order ODE has two linearly independent solutions.

These initial conditions are typically given in the form y(t0) = y0 and y'(t0) = y1, where t0 is the initial time, and y0 and y1 are the initial values of y(t) and y'(t), respectively.

The two initial conditions are necessary to determine a unique solution to the second-order ODE. Without them, there would be an infinite number of possible solutions. By providing the initial conditions, you establish constraints on the solutions, which allow for a unique solution that satisfies both the ODE and the initial conditions.

In summary, an IVP for a second-order homogeneous linear ODE consists of an equation and two initial conditions, ensuring a unique solution to the problem.

Know more about ODE here:

https://brainly.com/question/19130837

#SPJ11

The taylor series for f(x) = cos(x) centered at x = 0 is cos(x) = Sigma^infinity_k=0 (-1)^k 1/(2k)! X^2k = 1 - 1/2! x^2 + 1/4! X^4 -1/6! X^6 + ... Substitute t^3 for x to construct a power series expansion for cos (t^3). For full credit, your answer should use sigma notation. Integrate term-by-term your answer in part (a) to construct a power series expansion for integral cos(t^3) dt. Your final answer should include + C since this integral is indefinite. For full credit, your answer should use sigma notation.

Answers

The power series expansion for ∫cos(t^3) dt is:

∫cos(t^3) dt = Σ^∞_k=0 (-1)^k (1/(2k)!(6k+1)) t^(6k+1) + C

To construct a power series expansion for cos(t^3), we will substitute t^3 for x in the Taylor series of cos(x) centered at x = 0:

cos(t^3) = Σ^∞_k=0 (-1)^k 1/(2k)! (t^3)^(2k)
= Σ^∞_k=0 (-1)^k 1/(2k)! t^(6k)

Now, we will integrate term-by-term to find a power series expansion for ∫cos(t^3) dt:

∫cos(t^3) dt = ∫(Σ^∞_k=0 (-1)^k 1/(2k)! t^(6k)) dt
= Σ^∞_k=0 (-1)^k ∫(1/(2k)! t^(6k)) dt

Integrating term-by-term:

= Σ^∞_k=0 (-1)^k (1/(2k)!(6k+1)) t^(6k+1) + C

So, the power series expansion for ∫cos(t^3) dt is:

∫cos(t^3) dt = Σ^∞_k=0 (-1)^k (1/(2k)!(6k+1)) t^(6k+1) + C

Learn more about "power series": https://brainly.com/question/14300219

#SPJ11

we were told the results are based on a random sample of ann arbor teens. is the following statement about the remaining assumption correct or not correct?we need to have a simple size n that is large enough, namely that the sample size n is at least 25.O CorrectO Incorrect

Answers

Correct. The assumption that the sample size should be at least 25 is correct. This is because, for a sample to be representative of the population, it should have enough observations to provide a reasonable estimate of the population parameters.

A sample size of at least 25 is generally considered the minimum requirement for statistical analysis. The statement about the remaining assumption is correct. In order to make valid inferences from a random sample, it is important to have a large enough sample size (n). A common rule of thumb is that the sample size should be at least 25. This helps to ensure that the sample is representative of the population and increases the accuracy of the results.

Learn more about statistics here: brainly.com/question/14128303

#SPJ11

Other Questions
in your summer job with a venture capital firm, you are given funding requests from four inventors of heat engines. the inventors claim the following data for their operating prototypes:PrototypeA B C DTc (oC) low-temperature reservoir 47 17 -33 37TH (oC) high-temperature reservoir 192 227 267 147claimed efficiency e (%) 22 37 58 20a. based on the Tc anfd TH values for prototype A, find its maximum possible efficiencyb. based on the Tc and TH values for the prototype B, find its maximum posibble efficiencyc. based on the Tc and TH values prtotype C, find its maximum posibble afficiency what are the fundamental errors of reasons petrified in the seduction of language true or false generally, benefits do not infuluecne a firms startey process What happens to light when it hits a translucent object? Last month, Laredo Company sold 460 units for $30 each. During the month, fixed costs were $3,318 and variable costs were $9 per unit. Required: 1. Determine the unit contribution margin and contribution margin ratio. 2. Calculate the break-even point in units and sales dollars. 3. Compute Laredo's margin of safety in units and as a percentage of sales.. many sociologists disagree with the term ""melting pot"" as it is applied to people living in the united states. melting pot may be an inaccurate characterization because the term: help me please i need it ASAP a vertical spring scale can measure weights up to 175N the scale extends by an amount of 13.0cm from its equilibrium position at 0N to the 175 N mark. A fish hanging from the bottom of the spring oscillates vertically at a frequency of 2.35 Hz. Ignore the mass of the spring, what is the mass Mof the fish ___ was the lead spokesperson for the nazi defendants at nuremberg QUESTION 1 The persistent failure to conform to a medical staff rule requiring physicians to complete records promptly can be the basis for: O limitations placed on or suspension of medical staff privilege. O assuring medical staff privileges. O sanctions by the planning board. O the department director completing the records of those physicians who fail to complete their records on a timely basis the supply curve will shift to the right if the cost of factor inputs decrease.group startstrue or false A student obtained an average PV value of 42000 in column (f) of the data table. If the syringe had been able to be adjusted to a volume of 35.0 mL, what would the pressure inside the flask be? Remember that PV= constant, and the volume you used includes the flask as well as the syringe. To position a grid item in the second row and cover the second and third column, apply the style(s): a grid-row: 2; grid-column: 2/3; b. grid-row: 2; grid-column: 2/4 ng b.dly - Poring crow: 2; 2.dily column: 2/3 Cound Global fo d. grid-row: 2: column-span: 2/2, Element rotone an ideal spring of negligible mass is 11.00 cm long when nothing is attached to it. when you hang a 3.75 kg object from it, you measure its length to be 12.50 cm.If you wanted to store 10.0J of potential energy in this spring, what would be its total length? Assume that it continues to obey Hooke's law.Express your answer numerically. If there is more than one answer, enter each answer, separated by a comma. Decide whether the statement is true or false. Choose the correct answer below. A. True because () is a subset of . B. False because contains 0 elements so the only element of () is 0C. False because contains no elements so nothing can belong to itD. True because (0) represents a set with one element, What are the laws of culture? discuss the effect of the earths magnetic field on the result of this experiment measuring mass of electron Identify the similarities and differences between a square and a rhombus help me solve this which measures would you recommend to reduce the security risks of allowing wi-fi, bluetooth, and near-field communication (nfc) devices for accessing your company's networks and information systems? (Choose all 2 choices)1. MDM systems2. Effective access control and identity management, including device-level control3. Because the Physical layer is wireless, there is no need to protect anything at this layer4. Whitelisting of authorized devices