A solution of 5.00 g oxalic acid (H2C2O4, M = 90.04) in 100.0 g H2O has a freezing point of –1.31 °C. What is the percent ionization of oxalic acid in this solution? The freezing point depression constant of water is Kf= 1.86 °C m²'. %3D (A) 13.5% (B) 26.8% (C) 70.4% (D) 100%

Answers

Answer 1

The freezing point depression of the solution can be used to determine the number of particles (ions and/or molecules) present in the solution. In this case, since oxalic acid does not completely dissociate in water,

we assume that it is a nonelectrolyte and will not dissociate into ions. Therefore, the expected depression of the freezing point would be equal to the product of the freezing point depression constant (Kf) and the molality (mol/kg) of the solute. By calculating the molality and comparing it with the expected depression, we can we assume that it is a nonelectrolyte and will not dissociate into ions.  determine the percent dissociation/ionization of oxalic acid. The calculated percent ionization of oxalic acid in this solution is approximately 26.8%, which is option (B).

Learn more about  acid   here:

https://brainly.com/question/14072179

#SPJ11


Related Questions

When 2.65 g of an unknown weak acid (HA) with a molar mass of 85.0 g/mol is dissolved in 250.0 g of water, the freezing point of the resulting solution is -0.259 ?C. Part A Calculate Ka for the unknown weak acid.

Answers

When 2.65 g of an unknown weak acid (HA) with a molar mass of 85.0 g/mol is dissolved in 250.0 g of water, the Kₐ for the unknown weak acid is 2.367 × 10⁻⁴

We know that,

dT = Kf ×molality × i

    = Kf×m×i

"i" is the van't Hoff factor.

Molality is defined as the number of moles of solute divided by the mass of solvent in kg.

i.e. molality

= (no of moles of solute) / Kg of solvent

= 2.65g /250g x 1 mol /85 g x1000g/kg

=0.1247 moles

and Kf for water = - 1.86 and dT = -0.259

by substitution

0.259 = 1.86× 0.1247 × i

Therefore, i = 1.116

when the degree of dissociation formula is:

when n=2 and  i = 1.116

a= i-1/n-1

= (1.116 -1)/(2-1)

= 0.116

Substituting these values to find Kₐ

∴K = Ca^2/(1-a)

    = (0.1247 × 0.116)² / (1-0.116)

    = 2.367 × 10⁻⁴

To know more about  Kₐ here

https://brainly.com/question/9173788

#SPJ4

How many kilograms of sodium chloride will be needed to produce 17kg of chlorine?​

Answers

To make 17 kg of chlorine, around 7.0031 kg of sodium chloride will be required.

Sodium chloride (NaCl) is generally electrolyzed to produce chlorine in a procedure known as chloralkali electrolysis.

The Chemical Equation for this reaction is:

2 NaCl + 2 H₂O → 2 NaOH + Cl₂ + H₂

According to this equation, 1 mole of Cl₂ is created for every 2 moles of NaCl.

NaCl has a molar mass of roughly 58.44 g/mol, while Cl₂ has a molar mass of roughly 70.90 g/mol.

We must first determine the number of moles of Cl₂ created in order to determine the quantity of NaCl necessary to make 17 kg of Cl₂:

Number of moles of Cl₂ = (17 kg) / (70.90 g/mol) = 240.03 mol

We just require half as many moles of NaCl since 1 mole of Cl₂ is created from 2 moles of NaCl:

Number of moles of NaCl = 1/2 × 240.03 mol = 120.015 mol

Finally, we can determine the necessary mass of NaCl:

Mass of NaCl = (120.015 mol) × (58.44 g/mol) = 7,003.1 g = 7.0031 kg

In order to make 17 kg of chlorine, roughly 7.0031 kg of sodium chloride will be required.

To learn more about Stoichiometry:

https://brainly.com/question/14935523

When the pressure is increased on the following system at equilibrium, 3H2(g) + N2(g) =2 NH3(g), by decreasing the volume to half of the initial volume, A. In order to restore equilibrium, the reaction shifts right, toward products B. In order to restore equilibrium, the reaction shifts left toward reactants C. No change occurs D. None of the above

Answers

There are 4 moles of gas on the left side (3H2 + N2) and 2 moles on the right side (2NH3), the reaction will shift right, toward products, to restore equilibrium. Therefore, the correct answer is A. In order to restore equilibrium, the reaction shifts right, toward products.

When the pressure is increased on the given system at equilibrium, decreasing the volume to half of the initial volume, the reaction will shift in the direction that produces fewer moles of gas. In this case, the reaction produces 2 moles of NH3 from 4 moles of gas (3 moles of H2 and 1 mole of N2). Therefore, the reaction will shift right towards products to reduce the pressure.
So, the correct answer is A. In order to restore equilibrium, the reaction shifts right, toward products.
When the pressure is increased on the following system at equilibrium, 3H2(g) + N2(g) = 2NH3(g), by decreasing the volume to half of the initial volume, the reaction shifts to restore equilibrium. According to Le Chatelier's principle, the system will shift to counteract the change in pressure. In this case, it will shift towards the side with fewer moles of gas to reduce pressure.
Since there are 4 moles of gas on the left side (3H2 + N2) and 2 moles on the right side (2NH3), the reaction will shift right, toward products, to restore equilibrium. Therefore, the correct answer is A. In order to restore equilibrium, the reaction shifts right, toward products.

To learn more about Moles, click here:

brainly.com/question/26416088

#SPJ11

between a water molecule and a cation, like na , a _____a_____ occurs between a _____b_____ of the water molecule and the cation.

Answers

Between a water molecule and a cation, like Na+, an electrostatic attraction occurs between a partial negative charge (oxygen) of the water molecule and the cation.

Here's a step-by-step explanation:

1. A water molecule is a polar molecule, which means it has areas with partial positive and partial negative charges. The oxygen atom has a partial negative charge, and the two hydrogen atoms have partial positive charges.
2. A cation, like Na+, is a positively charged ion.
3. When a cation is near a water molecule, the partial negative charge (oxygen) of the water molecule is attracted to the positively charged cation, creating an electrostatic attraction between them. This interaction is also called ion-dipole interaction.

So, an electrostatic attraction occurs between a partial negative charge (oxygen) of the water molecule and the cation (like Na+).

Learn more about cations at https://brainly.com/question/30754382

#SPJ11

a sample of an unknown substances has a heat capacity of 4.29 j/g °c and a mass of 9.9 kg. how much heat (in kcal) must be added to warm the solution from 7.9 °cto 94.5°c?

Answers

The amount of heat required to warm the substance from 7.9 °c to 94.5 °c is 907.3 kcal.

To solve this problem, we need to use the following formula:
Q = m × C × ΔT
where Q is the amount of heat, m is the mass of the substance, C is the specific heat capacity, and ΔT is the change in temperature.

We are given that the heat capacity (C) of the substance is 4.29 j/g °c and its mass (m) is 9.9 kg. We need to find the amount of heat (Q) required to raise the temperature from 7.9 °c to 94.5 °c.

First, we need to convert the units of the specific heat capacity from j/g °c to kcal/kg °c. We can do this by dividing 4.29 by 4.184 (the conversion factor between joules and calories) and multiplying by 1,000 (the conversion factor between calories and kilocalories):

C = 4.29 / 4.184 × 1,000 = 1.024 kcal/kg °c

Next, we can plug in the values into the formula:

Q = 9.9 kg × 1.024 kcal/kg °c × (94.5 °c - 7.9 °c)

Q = 9.9 kg × 1.024 kcal/kg °c × 86.6 °c

Q = 907.3 kcal

Therefore, the amount of heat required to warm the substance from 7.9 °c to 94.5 °c is 907.3 kcal.

Visit here to learn more about  heat capacity : https://brainly.com/question/28302909
#SPJ11

what is the purpose of transforming aniline (2) into acetanilide (3) before performing the bromination step

Answers

The purpose of transforming aniline into acetanilide before performing the bromination step is to increase the selectivity of the reaction. Aniline is a highly reactive compound and can undergo unwanted side reactions such as self-condensation or oxidation during the bromination process.

These side reactions can lead to a decrease in the yield of the desired product and the formation of unwanted byproducts. Acetanilide, on the other hand, is a more stable compound that is less likely to undergo these side reactions.

By converting aniline into acetanilide, the bromination reaction becomes more selective, resulting in a higher yield of the desired product, which is 4-bromoacetanilide.

Furthermore, acetanilide has a lower solubility in water compared to aniline, making it easier to isolate the product after the reaction is complete. Overall, the transformation of aniline into acetanilide serves to improve the efficiency of the bromination reaction and increase the purity of the final product.

To know more about aniline refer here:

https://brainly.com/question/13887633#

#SPJ11

What general conclusions can you draw concerning the acidity or basicity of the hydroxides of the elements of the third period? Discuss general trends in metallic and non-metallic properties as shown by your experiment.

Answers

Third period hydroxides shows a general trend of increasing acidity and decreasing basicity from left to right, which is related to the metallic and non-metallic properties of the elements.

Based on the acidity and basicity of the hydroxides of elements in the third period, we can draw some general conclusions. Typically, as we move from left to right across the period, the acidity of hydroxides increases while the basicity decreases. This trend is related to the metallic and non-metallic properties of the elements.

Towards the left side of the period, elements exhibit more metallic properties, which results in their hydroxides being more basic. Examples include sodium (Na) and magnesium (Mg). As we progress towards the right side of the period, elements become more non-metallic, and their hydroxides display more acidic properties. Examples include phosphorus (P) and sulfur (S).

In summary, the acidity and basicity of hydroxides in the third period are influenced by the metallic and non-metallic properties of the elements. The trend shows that hydroxides become more acidic and less basic as we move from left to right across the period.

Know more about Hydroxide here:

https://brainly.com/question/21904397

#SPJ11

The hydroxide ion concentration of an aqueous solution of 0.355 M hydrocyanic acid is [OH-] = _______ M. The pH of an aqueous solution of 0.595 M acetic acid is______

Answers

The hydroxide ion concentration of an aqueous solution of 0.355 M hydrocyanic acid is 7.27 x 10⁻⁶ M.

How we can hydrocyanic aqueous solution of acetic acid?

To find the hydroxide ion concentration of an aqueous solution of 0.355 M hydrocyanic acid, we need to first write the balanced chemical equation for the dissociation of hydrocyanic acid in water:

[tex]HCN + H2O[/tex]⇌ [tex]H3O+ + CN-[/tex]

The acid dissociation constant, Ka, for hydrocyanic acid is 4.9 x 10⁻¹°. We can write the expression for the acid dissociation constant:

Ka =[tex][H3O+][CN-] / [HCN][/tex]

Since we are looking for the hydroxide ion concentration, [OH-], we can use the relationship between the concentration of hydroxide ions and the concentration of hydronium ions:

Kw = [tex][H3O+][OH-][/tex]

At 25°C, the value of the ion product constant, Kw, is 1.0 x 10⁻¹⁴. Using the expression for Kw, we can find the concentration of hydroxide ions:

[tex][OH-][/tex] = [tex]Kw / [H3O+][/tex]

[tex][OH-][/tex]= [tex]1.0 x 10⁻¹⁴ / [H3O+][/tex]

To find [H3O+], we can use the expression for the acid dissociation constant and the concentration of hydrocyanic acid:

Ka = [tex][H3O+][CN-] / [HCN][/tex]

[tex][H3O+][/tex] = [tex]Ka x [HCN] / [CN-][/tex]

Substituting this into the expression for [OH-], we get:

[tex][OH-][/tex] = 1.0 x 10⁻¹⁴ / [tex](Ka x [HCN] / [CN-])[/tex]

[tex][OH-][/tex] = [tex]([CN-] / Ka) x (1 / [HCN])[/tex] x 1.0 x 10⁻¹⁴

[tex][OH-][/tex]= (0.355 M / 4.9 x 10⁻¹°) x (1 / 0.355 M) x 1.0 x 10⁻¹⁴

[tex][OH-][/tex]= 7.27 x 10⁻⁶  M

To find the pH of an aqueous solution of 0.595 M acetic acid, we need to first write the balanced chemical equation for the dissociation of acetic acid in water:

[tex]CH3COOH + H2O ⇌ H3O+ + CH3COO-[/tex]

The acid dissociation constant, Ka, for acetic acid is 1.8 x 10⁻⁵. We can write the expression for the acid dissociation constant:

Ka = [tex][H3O+][CH3COO-] / [CH3COOH][/tex]

To find the pH, we can use the relationship between the concentration of hydronium ions and the pH:

pH = -log[tex][H3O+][/tex]

To find [H3O+], we can use the expression for the acid dissociation constant and the concentration of acetic acid:

Ka = [tex][H3O+][CH3COO-] / [CH3COOH][/tex]

[tex][H3O+][/tex] = Ka x [tex][CH3COOH] / [CH3COO-][/tex]

Substituting this into the expression for pH, we get:

pH = -log[tex](Ka x [CH3COOH] / [CH3COO-])[/tex]

pH = -log(Ka) - log[tex]([CH3COOH] / [CH3COO-])[/tex]

pH = -log(1.8 x 10⁻⁵) - log(0.595 [tex]M / [CH[/tex]

Learn more about hydrocyanic

brainly.com/question/28590511

#SPJ11

What volume (in L) of 1.60 M Na3PO, would be required to obtain 0.600 moles of Nations?

Answers

To make 0.600 moles of PO43-, you would need 0.375 L of 1.60 M Na₃PO₄.

How is 0.1 M AgNO₃ solution calculated?

By mixing 1.7 g of silver nitrate with 100 ml of water, you can create a stock solution of 0.1 M silver nitrate. Prior to making the Silver thiosulphate solution (STS), store the stock solutions in the dark. The (STS) is typically made using a 1:4 molar ratio of silver to thiosulphate.

For the reaction between Na₃PO₄ and water, the balanced chemical equation is:

Na₃PO₄ + 3 H₂O → 3 Na₊ + PO₄₃₋ + 3 OH₋

We can observe from this equation that 1 mole of Na₃PO₄ results in 1 mole of PO₄₋ ions. We would require 0.600 moles of Na₃PO₄ in order to produce 0.600 moles of PO₄₃₋.

The needed volume of 1.60 M Na₃PO₄ can be determined using the following formula:

Volume (L) = moles / molarity

Volume = 0.600 moles / 1.60 M

Volume = 0.375 L

To know more about solution visit:-

https://brainly.com/question/30665317

#SPJ1

What is the ph of the resulting solution if 25.00 ml of 0.10 m acetic acid is added to 10.00 ml of 0.10 m NaOH? assume that the volumes of the solutions are additive. ka = 1.8 × 10^-5 for CH3CO2h.

Answers

The pH of the resulting solution if 25.00 ml of 0.10 m acetic acid is added to 10.00 ml of 0.10 m NaOH is 5.80.

To solve this problem, we need to use the equation for the acid-base reaction between acetic acid and sodium hydroxide:

CH₃CO₂H + NaOH → CH₃CO₂Na + H₂O

First, we need to calculate the number of moles of acetic acid and sodium hydroxide:

n(acetic acid) = V(acetic acid) x C(acetic acid) = 25.00 mL x 0.10 mol/L = 0.00250 mol
n(sodium hydroxide) = V(sodium hydroxide) x C(sodium hydroxide) = 10.00 mL x 0.10 mol/L = 0.00100 mol

Next, we need to determine the limiting reagent. Since the stoichiometric ratio of acetic acid to sodium hydroxide is 1:1, we can see that sodium hydroxide is the limiting reagent because there are fewer moles of it.

The reaction between sodium hydroxide and acetic acid will produce sodium acetate and water. We can calculate the number of moles of sodium acetate produced using the balanced equation:

n(sodium acetate) = n(sodium hydroxide) = 0.00100 mol

Now, we need to calculate the concentration of acetic acid and acetate ion in the final solution. Since the volumes are additive, the total volume of the solution is:

V(total) = V(acetic acid) + V(sodium hydroxide) = 25.00 mL + 10.00 mL = 35.00 mL = 0.035 L

The concentration of acetate ion is equal to the moles of acetate ion divided by the total volume of the solution:

C(acetate ion) = n(sodium acetate) / V(total) = 0.00100 mol / 0.035 L = 0.0286 mol/L

Finally, we can calculate the pH of the resulting solution using the Ka expression for acetic acid:

Ka = [H⁺][CH₃CO₂⁻]/[CH₃CO₂H]

[H⁺] = Ka x [CH₃CO₂H] / [CH₃CO₂⁻]
[H⁺] = [tex](1.8 * 10^{-5})[/tex] x (0.00250 mol/L) / (0.0286 mol/L)
[H⁺] = [tex]1.57 * 10^{-6} M[/tex]

pH = -log[H⁺]
pH = [tex]-log(1.57 * 10^{-6})[/tex]
pH = 5.80

Therefore, the pH of the resulting solution is 5.80.

To know more about pH, refer to the link below:

https://brainly.com/question/16639754#

#SPJ11

how many calcium ions are there in 2.64 mol ca3n2 ?

Answers

In 2.64 mol of Ca3N2, there are 7.92 mol of calcium ions (Ca2+). This is because there are 3 moles of Ca2+ for every mole of Ca3N2. To find the number of calcium ions, you can use Avogadro's number (6.022 x 10^23 ions/mol): (2.64 mol Ca3N2) x (3 mol Ca2+ / 1 mol Ca3N2) = 7.92 mol Ca2+ (7.92 mol Ca2+) x (6.022 x 10^23 ions/mol) ≈ 4.77 x 10^24 calcium ions.

To find the number of calcium ions in 2.64 mol of Ca3N2, we first need to calculate the number of moles of calcium ions in Ca3N2.
Ca3N2 is composed of three calcium ions (Ca2+) and two nitride ions (N3-). This means that for every molecule of Ca3N2, there are three calcium ions.
So, to find the number of moles of calcium ions in 2.64 mol of Ca3N2, we can use the following formula:
moles of Ca2+ = (moles of Ca3N2) x (3 Ca2+ ions / 1 Ca3N2 molecule)
moles of Ca2+ = 2.64 mol x (3 Ca2+ ions / 1 Ca3N2 molecule)
moles of Ca2+ = 7.92 mol
Therefore, there are 7.92 mol of calcium ions in 2.64 mol of Ca3N2.
To find the actual number of calcium ions, we can use Avogadro's number:
number of Ca2+ ions = (moles of Ca2+) x (Avogadro's number)
number of Ca2+ ions = 7.92 mol x (6.022 x 10^23 ions/mol)
number of Ca2+ ions = 4.77 x 10^24 ions
So, there are approximately 4.77 x 10^24 calcium ions in 2.64 mol of Ca3N2.

Learn more about calcium ions here:

https://brainly.com/question/28504818

#SPJ11

: A 25 ml solution of HBr is completely neutralized by 18 mL of 1.0 M LiOH. What is the concentration of the HBr solution? Would you consider the acid solution to be concentrated or dilute? Justify your answer. Make sure to write the balanced chemical equation to show the neutralization reaction that occurs and use significant figures when solving for the concentration (Equation: MAVA= MBVB).

Answers

The HBr solution with a concentration of 0.72 M would be considered concentrated.

The balanced chemical equation for the neutralization reaction between HBr and LiOH is:

HBr + LiOH → LiBr + H2O

According to the equation, 1 mole of HBr reacts with 1 mole of LiOH to produce 1 mole of water.

Using the given volume and concentration of LiOH, we can calculate the number of moles of LiOH used:

moles of LiOH = M x V = 1.0 M x 0.018 L = 0.018 moles

Since the reaction is 1:1 between HBr and LiOH, the number of moles of HBr present in the 25 mL solution is also 0.018 moles.

Using the equation MAVA= MBVB, we can solve for the concentration of the HBr solution:

MA = (MB x VB) / VA = (1.0 M x 0.018 L) / 0.025 L = 0.72 M

Therefore, the concentration of the HBr solution is 0.72 M.

To determine if the solution is concentrated or dilute, we need to compare its concentration to the typical range of concentrations for acid solutions.

Acid solutions with concentrations less than 0.1 M are considered dilute, while those with concentrations greater than 1.0 M are considered concentrated.

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

The HBr solution with a concentration of 0.72 M would be considered concentrated.

The balanced chemical equation for the neutralization reaction between HBr and LiOH is:

HBr + LiOH → LiBr + H2O

According to the equation, 1 mole of HBr reacts with 1 mole of LiOH to produce 1 mole of water.

Using the given volume and concentration of LiOH, we can calculate the number of moles of LiOH used:

moles of LiOH = M x V = 1.0 M x 0.018 L = 0.018 moles

Since the reaction is 1:1 between HBr and LiOH, the number of moles of HBr present in the 25 mL solution is also 0.018 moles.

Using the equation MAVA= MBVB, we can solve for the concentration of the HBr solution:

MA = (MB x VB) / VA = (1.0 M x 0.018 L) / 0.025 L = 0.72 M

Therefore, the concentration of the HBr solution is 0.72 M.

To determine if the solution is concentrated or dilute, we need to compare its concentration to the typical range of concentrations for acid solutions.

Acid solutions with concentrations less than 0.1 M are considered dilute, while those with concentrations greater than 1.0 M are considered concentrated.

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

determine whether each salt is generally classified as soluble or insoluble in water.
MgCO₃ =
Ba(NO₃)₂ =
Ca₃(PO₄)₂ =
AgBr =
Ag₂SO₄ =
Na₂SO₄ =
NaNO₃ =
Al₂(SO₄)₃ =

Answers

Soluble salts in water: Ba(NO₃)₂,  Na₂SO₄, NaNO₃, Al₂(SO₄)₃ and insoluble salts are:  MgCO₃, Ca₃(PO₄)₂, AgBr, Ag₂SO₄.

To determine whether each salt is generally classified as soluble or insoluble in water, consider the following guidelines:

1. Most nitrate (NO₃⁻) and alkali metal (Group 1) salts are soluble.
2. Most sulfate (SO₄²⁻) salts are soluble, with some exceptions.
3. Most carbonate (CO₃²⁻), phosphate (PO₄³⁻), and hydroxide (OH⁻) salts are insoluble, with some exceptions.
4. Most chloride (Cl⁻), bromide (Br⁻), and iodide (I⁻) salts are soluble, with some exceptions.

Based on these guidelines:

MgCO₃ = Insoluble (carbonate)
Ba(NO₃)₂ = Soluble (nitrate)
Ca₃(PO₄)₂ = Insoluble (phosphate)
AgBr = Insoluble (exception to halides)
Ag₂SO₄ = Insoluble (exception to sulfates)
Na₂SO₄ = Soluble (sulfate)
NaNO₃ = Soluble (nitrate)
Al₂(SO₄)₃ = Soluble (sulfate)

Know more about Salts here:

https://brainly.com/question/14467184

#SPJ11

Sort the following compounds into the appropriate bins based on the type of stereoisomerism they exhibit (or lack of thereof). Note that all halogens and hydrogens are terminal atoms, each connected to a carbon atom. o Neither Geometric nor Optical o Geometric o Optical • CCl2=CHI • CHCI=CHCH2C1 • CH3-CH2-CH=CH-CH2-CH3 • CH2CH(CBrz)CH2CH3 • CH3CHCICH Br

Answers

Neither Geometric nor Optical:
- CH3CHCICHBr

Geometric:
- CCl2=CHI
- CHCl=CHCH2Cl
- CH2CH(CBr2)CH2CH3

Optical:
- CH3-CH2-CH=CH-CH2-CH3

In organic chemistry, stereoisomers are compounds that have the same molecular formula and the same connectivity of atoms, but differ in the way that the atoms are arranged in space.

Geometric isomers are a type of stereoisomerism that occurs in compounds that have restricted rotation around a double bond or a ring. Geometric isomers have different spatial arrangements of groups on either side of the double bond or within the ring. The compounds CCl2=CHI, CHCl=CHCH2Cl, and CH2CH(CBr2)CH2CH3 all have double bonds and therefore exhibit geometric isomerism.

Optical isomers are a type of stereoisomerism that occurs in compounds that have an asymmetric carbon atom, which is a carbon atom that is bonded to four different groups. Optical isomers are mirror images of each other and cannot be superimposed on one another. The compound CH3-CH2-CH=CH-CH2-CH3 has an asymmetric carbon atom and therefore exhibits optical isomerism.

The compound CH3CHCICHBr does not have any double bonds or asymmetric carbon atoms, so it does not exhibit either geometric or optical isomerism and is classified as neither.

Visit to know more about Optical:-

brainly.com/question/30438544

#SPJ11

a two-word phrase in each box. the value of the ___ q is equal to the ___ k, when equilibrium is reacted

Answers

The value of the "reaction quotient (Q)" is equal to the "equilibrium constant (K) when equilibrium is reached.

The reaction quotient (Q) is a measure of the relative concentrations of reactants and products in a chemical reaction at a given point in time, before the reaction has reached equilibrium. It is calculated in the same way as the equilibrium constant (K_eq), but using the current concentrations of the reactants and products rather than their equilibrium concentrations.

The equilibrium constant, denoted by K, is a quantitative measure of the extent to which a chemical reaction proceeds to reach equilibrium. It relates the concentrations of the products and reactants at equilibrium, under a given set of conditions.

Learn more about equilibrium:

https://brainly.com/question/2162534

#SPJ11

What concentration of aqueous NH3 is necessary to just start precipitation of Mn(OH)2 from a 0.020 M solution MnSO4? Kb for NH3 is 1.8 × 10−5 and Ksp for Mn(OH)2 is 4.6 × 10−14.
a. 1.4 × 10^−5 M
b. 3.7 × 10^−7 M
c. 1.6 × 10^−6 M
d. 1.3 × 10^−7 M
e. 8.4 × 10^−2 M

Answers

The concentration of aqueous NH3 required to just start precipitation of Mn(OH)2 from a 0.020 M solution of MnSO4 is 8.4 × 10^−2 M

To determine the concentration of aqueous NH3 necessary to just start precipitation of Mn(OH)2 from a 0.020 M solution of MnSO4, we need to use the given Kb for NH3 and the Ksp for Mn(OH)2.

First, find the concentration of OH- ions needed to start the precipitation using the Ksp expression for Mn(OH)2:

Ksp = [Mn2+][OH-]^2
4.6 × 10^−14 = (0.020)[OH-]^2

Solve for [OH-]:
[OH-] = √(4.6 × 10^−14 / 0.020) ≈ 4.8 × 10^−7 M

Now, use the Kb expression for NH3 to find the required concentration of NH3:

Kb = [NH4+][OH-] / [NH3]
1.8 × 10^−5 = [NH4+][4.8 × 10^−7] / [NH3]

Assume that [NH4+] and [OH-] are equal since they come from the same source (NH3). Therefore:

1.8 × 10^−5 = [4.8 × 10^−7]^2 / [NH3]

Solve for [NH3]:


[NH3] ≈ 8.4 × 10^−2 M

Your answer: e. 8.4 × 10^−2 M

Know more about Ksp here:

https://brainly.com/question/27132799

#SPJ11

How many atoms are contained in 6 grams of carbon monoxide CO?

Answers

Answer: There are nine atoms in carbon monoxide (CO). One atom of carbon (C) and one atom of oxygen (O).

Explanation:

moving from less condensed phases to more condensed phases is an exothermic process, and the reverse is an endothermic process. group of answer choicestruefalse

Answers

It is True. Moving from less condensed phases (such as gas) to more condensed phases (such as liquid or solid) involves particles coming closer together and releasing energy, which makes it an exothermic process.

The reverse, going from more condensed phases to less condensed phases, requires energy input to overcome the intermolecular forces holding the particles together, making it an endothermic process. Exothermic processes are those that release energy, while endothermic processes are those that absorb energy. In this context, when a substance moves from a less condensed phase to a more condensed phase, energy is released in the form of heat. The reverse process, moving from a more condensed phase to a less condensed phase, requires energy and thus is endothermic.

To learn more about exothermic process click here https://brainly.com/question/12321421

#SPJ11

calculate the solubility of iron(ii) hydroxide (ksp=4.87×10−17)(ksp=4.87×10−17) in pure water in grams per 100.0 mlml of solution.

Answers

The solubility product expression for iron(II) hydroxide, Fe(OH)2, is:

Ksp = [Fe2+][OH-]^2 = 4.87×10^-17

Let's assume that the initial concentration of Fe2+ and OH- ions in pure water is x M. Then, the equilibrium concentration of Fe2+ and OH- ions will also be x M.

Therefore, the solubility product expression becomes:

Ksp = x * (2x)^2 = 4x^3

Solving for x:

4x^3 = 4.87×10^-17

x^3 = 1.2175×10^-17

x = (1.2175×10^-17)^(1/3)

x = 2.312×10^-6 M

The solubility of Fe(OH)2 is equal to the concentration of Fe2+ ions, which is x.

To convert this to grams per 100.0 ml of solution, we need to multiply by the molar mass of Fe(OH)2 and the volume of the solution:

solubility = x * molar mass * 100 / volume

Assuming the molar mass of Fe(OH)2 is 89.86 g/mol and the volume of the solution is 100.0 ml, we get:

solubility = (2.312×10^-6 M) * (89.86 g/mol) * 100 / 100.0 ml

solubility = 0.00208 g/100.0 ml

Therefore, the solubility of iron(II) hydroxide in pure water is 0.00208 g/100.0 ml of solution.

*IG:whis.sama_ent*

If 30.10 mL of NaOH were required to titrate 10.00 mL of 0.2341 M H2SO4, what is the molarity of the NaOH solution?

Answers

The molarity of the NaOH solution is 0.1554 M. To get the molarity of the NaOH solution used to titrate 10.00 mL of 0.2341 M H2SO4 with 30.10 mL of NaOH, follow these steps:


Step:1. Write the balanced chemical equation for the reaction: H2SO4 + 2NaOH → Na2SO4 + 2H2O
Step:2. Calculate the moles of H2SO4: moles = Molarity × Volume = 0.2341 M × 0.010 L = 0.002341 moles
Step:3. Determine the stoichiometric ratio between H2SO4 and NaOH: 1:2 (1 mole of H2SO4 reacts with 2 moles of NaOH)
Step:4. Calculate the moles of NaOH required: 0.002341 moles H2SO4 × (2 moles NaOH / 1 mole H2SO4) = 0.004682 moles NaOH
Step:5. Determine the molarity of the NaOH solution: Molarity = moles / Volume = 0.004682 moles / 0.0301 L = 0.1554 M. So, the molarity of the NaOH solution is 0.1554 M.

Learn more about molarity here, https://brainly.com/question/14469428

#SPJ11

The molarity of the NaOH solution is 0.1554 M. To get the molarity of the NaOH solution used to titrate 10.00 mL of 0.2341 M H2SO4 with 30.10 mL of NaOH, follow these steps:


Step:1. Write the balanced chemical equation for the reaction: H2SO4 + 2NaOH → Na2SO4 + 2H2O
Step:2. Calculate the moles of H2SO4: moles = Molarity × Volume = 0.2341 M × 0.010 L = 0.002341 moles
Step:3. Determine the stoichiometric ratio between H2SO4 and NaOH: 1:2 (1 mole of H2SO4 reacts with 2 moles of NaOH)
Step:4. Calculate the moles of NaOH required: 0.002341 moles H2SO4 × (2 moles NaOH / 1 mole H2SO4) = 0.004682 moles NaOH
Step:5. Determine the molarity of the NaOH solution: Molarity = moles / Volume = 0.004682 moles / 0.0301 L = 0.1554 M. So, the molarity of the NaOH solution is 0.1554 M.

Learn more about molarity here, https://brainly.com/question/14469428

#SPJ11

explain why hc--ch is more acidic than ch3ch3, even though the c-h bond in hc-ch has a higher bond dissociation energy than the ch bond in ch3ch3

Answers

The reason why HC≡CH (acetylene) is more acidic than CH3CH3 (ethane) is due to the difference in hybridization of the carbon atoms and the resulting stability of the conjugate bases formed upon deprotonation. In HC≡CH, the carbon atom is sp-hybridized, while in CH3CH3, the carbon atom is sp3-hybridized.

When a proton is removed from HC≡CH, the resulting conjugate base is a negatively charged acetylide ion (C≡C-), in which the negative charge is delocalized over the two sp-hybridized carbon atoms. This delocalization of the negative charge leads to a more stable conjugate base, making it easier for the molecule to lose a proton and act as an acid.

On the other hand, when a proton is removed from CH3CH3, the resulting conjugate base is a negatively charged ethyl anion (CH3CH2-), with the negative charge localized on a single sp3-hybridized carbon atom. This conjugate base is less stable than the acetylide ion due to the lack of delocalization, making it harder for ethane to lose a proton and act as an acid.

Thus, even though the C-H bond in HC≡CH has a higher bond dissociation energy than the C-H bond in CH3CH3, HC≡CH is more acidic because its conjugate base is more stable due to the delocalization of the negative charge over the sp-hybridized carbon atoms.

To know more about conjugate bases click here:

https://brainly.com/question/12883745

#SPJ11

Calculate the volume of a solution prepared by diluting a 2.0 L solution of 0.80 M Ca(CO3)2 to 0.30 M. Select the correct answer below: 5.3 L 6.1 L 6.7 L 7.2 L FEEDBACK MORE INSTRUCTION SUBMIT

Answers

The U.S. Geological Survey's procedures for organising and carrying out investigations on water resources are described in a series of chapters on methodologies.5.3 Temperature affects the standard heat of reaction.

2*0.8= 0.3 V

V= 1.6/0.3

= 5.3. Users of the Code may obtain the wording of the provisions in effect by searching for an OMB control number displayed by federal agencies.The manual balances the need for comprehensive coverage by giving an overview of the application of nuclear techniques in soil science and plant nutrition.

To know more about water resources, click here:

https://brainly.com/question/27327901

#SPJ4

Whenever a gas expands isothermally, such as when you exhale or when a flask is opened, the gas undergoes an increase in entropy. A sample of methane gas of mass 15 g at 260 K and 105 kPa expands isothermally and (a) revers- ibly, (b) irreversibly until its pressure is 1.50 kPa. Calculate the change in entropy of the gas.

Answers

When a gas expands isothermally, its temperature remains constant throughout the process. Therefore, the change in entropy can be calculated using the equation:

ΔS = nRln(V₂/V₁)

where ΔS is the change in entropy, n is the number of moles of gas, R is the gas constant, V₁ is the initial volume, and V₂ is the final volume.

(a) Reversibly expanding the methane gas at 260 K and 105 kPa until its pressure is 1.50 kPa, we can use the ideal gas law to calculate the initial volume:

PV = nRT

V₁ = (nRT)/P₁ = (15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x 260 K/105 kPa = 0.286 L

Similarly, we can calculate the final volume:

V₂ = (nRT)/P₂ = (15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x 260 K/1.50 kPa = 5.00 L

Substituting these values into the entropy equation, we get:

ΔS = (15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x ln(5.00 L/0.286 L) = 25.1 J/K

Therefore, the change in entropy of the methane gas when it isothermally and reversibly expands from 105 kPa to 1.50 kPa is 25.1 J/K.

(b) Irreversibly expanding the methane gas until its pressure is 1.50 kPa, we cannot use the same equation as in part (a) because the process is not reversible. Instead, we need to use the equation:

ΔS = q/T

where q is the heat transferred and T is the temperature.

Since the expansion is irreversible, the heat transferred is not equal to the work done on or by the gas. However, we can use the fact that the internal energy of an ideal gas depends only on its temperature to write:

ΔU = 0 = q - w

where ΔU is the change in internal energy and w is the work done on or by the gas. Since the expansion is isothermally and the temperature remains constant, we can write:

w = nRTln(V₂/V₁) = -q

Therefore, the heat transferred can be calculated as:

q = -nRTln(V₂/V₁)

Substituting this into the entropy equation, we get:

ΔS = -(15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x ln(5.00 L/0.286 L) / 260 K = 22.1 J/K

Therefore, the change in entropy of the methane gas when it isothermally and irreversibly expands from 105 kPa to 1.50 kPa is 22.1 J/K.

Learn more about internal energy here:

https://brainly.com/question/11742607

#SPJ11

22 g of KCl and 200 g of H,O Express your answer using two significant figures. AEP O ? Submit Request Answer Part B 11 g of sugar in 225 g of tea with sugar (solution) Express your answer using two significant figures. 0 AED ON? Submit Request Answer Part 7.0 g of CaCl, in 85.0 g of CaCl, solution Express your answer using two significant figures 90 AED ROO? MacBook Air

Answers

A. The answer is 4.9 % (2 sig figs). This gives us 0.115 mol of KCl and 0.0938 mol of H₂O.

B. The answer to this question is 4.9 % (2 sig figs). This gives us 0.068 mol of sugar and 0.0938 mol of tea.

What is molar mass?

It is calculated by adding together the atomic masses of all the atoms in the substance. The molar mass of a substance is an important factor for understanding its properties and behavior.

Part A: 22 g of KCl and 200 g of H₂O.

The answer to this question is 4.9 % (2 sig figs). This can be calculated by first converting the given masses of KCl and H₂O into moles, using their respective molar masses.

This gives us 0.115 mol of KCl and 0.0938 mol of H₂O.

We can then calculate the mass percent of KCl in the solution by dividing the mass of KCl by the total mass of the solution and multiplying by 100. This gives us 4.9 % (2 sig figs) of KCl in the solution.

Part B: 11 g of sugar in 225 g of tea with sugar (solution).

The answer to this question is 4.9 % (2 sig figs). This can be calculated by first converting the given masses of sugar and tea into moles, using their respective molar masses.

This gives us 0.068 mol of sugar and 0.0938 mol of tea.

We can then calculate the mass percent of sugar in the solution by dividing the mass of sugar by the total mass of the solution and multiplying by 100.

This gives us 4.9

For more questions related to atomic masses

https://brainly.com/question/30390726

#SPJ1

A. The answer is 4.9 % (2 sig figs). This gives us 0.115 mol of KCl and 0.0938 mol of H₂O.

B. The answer to this question is 4.9 % (2 sig figs). This gives us 0.068 mol of sugar and 0.0938 mol of tea.

What is molar mass?

It is calculated by adding together the atomic masses of all the atoms in the substance. The molar mass of a substance is an important factor for understanding its properties and behavior.

Part A: 22 g of KCl and 200 g of H₂O.

The answer to this question is 4.9 % (2 sig figs). This can be calculated by first converting the given masses of KCl and H₂O into moles, using their respective molar masses.

This gives us 0.115 mol of KCl and 0.0938 mol of H₂O.

We can then calculate the mass percent of KCl in the solution by dividing the mass of KCl by the total mass of the solution and multiplying by 100. This gives us 4.9 % (2 sig figs) of KCl in the solution.

Part B: 11 g of sugar in 225 g of tea with sugar (solution).

The answer to this question is 4.9 % (2 sig figs). This can be calculated by first converting the given masses of sugar and tea into moles, using their respective molar masses.

This gives us 0.068 mol of sugar and 0.0938 mol of tea.

We can then calculate the mass percent of sugar in the solution by dividing the mass of sugar by the total mass of the solution and multiplying by 100.

This gives us 4.9

For more questions related to atomic masses

https://brainly.com/question/30390726

#SPJ1

after how many years will the activity of a new sample of cobalt 60 be decreased to 1 8 its original value?

Answers

After 15.81 years will the activity of a new sample of cobalt 60 be decreased to 1/8 its original value.

Cobalt-60 has a half-life of roughly 5.27 years, which indicates that a sample's activity is reduced by half every 5.27 years. We may use the following formula to calculate how long it will take for the activity of a new sample of cobalt-60 to decline to 1/8 of its initial value.

t = t1/2 x log₂(Nf / Ni), time it takes for the activity to decrease is t, the half-life of cobalt-60 (5.27 years) is t1/2, the final activity (1/8 of the initial activity) Nf, and initial activity (1) is Ni. Plugging in the values, we get,

t = 5.27 years x log₂(1/8)

t = 5.27 years x log₂0.125

t = 5.27 years x (-3)

t = -15.81 years

The negative result here does not make sense because time cannot be negative. Therefore, we need to take the absolute value of the result, which gives,

t = 15.81 years

Thus, it will take approximately 15.81 years for the activity of a new sample of cobalt-60 to decrease to 1/8 its original value.

To know more about radioactivity, visit,

https://brainly.com/question/1236735

#SPJ4

Complete question - After how many years will the activity of a new sample of cobalt 60 be decreased to 1/8 its original value?

Spacecraft bring back samples of two asteroids. One brings back a small sample, and the other brings back a large sample. Back on Earth, scientists observer that the samples have a similar color and hardness. Scientists weigh the samples and find that the small sample has a mass of 10 grams, and the large sample has a mass of 1,000 grams.

Write a set of procedures that will allow any scientist to be able to gather more evidence about whether the two samples are likely to be the same substance or not.

This is just confusing.

Answers

Here are some procedures that scientists can follow to gather more evidence about whether samples are the same substance or not: Conduct a chemical analysis, Conduct a spectroscopic analysis, Conduct a crystallographic analysis, Conduct a density analysis

Conduct a chemical analysis: If the samples have the same composition, then they are likely to be the same substance.

Conduct a spectroscopic analysis: If the spectral signatures are the same, then the samples are likely to be the same substance.

Conduct a crystallographic analysis: If the crystal structures are the same, then the samples are likely to be the same substance.

Conduct a density analysis: If the densities are the same, then the samples are likely to be the same substance.

To know more about spectral signatures, here

brainly.com/question/22636286

#SPJ1

A mixture of CO(g) and O2(g) in a 1.1 −L container at 1.0×103 K has a total pressure of 2.3 atm . After some time the total pressure falls to 1.8 atm as the result of the formation of CO2.
Find the mass (in grams) of CO2 that forms.

Answers

The mass of [tex]CO_{2}[/tex] that forms is approximately 0.299 grams.

How to calculate the mass of a gas ?

The term "partial pressure" refers to the pressure that one gas in a combination imposes. Partial pressure refers to the pressure exerted by a gas in a gas mixture if it alone inhabited the entire volume occupied by the combination.

To find the mass of [tex]CO_{2}[/tex] that forms in the reaction between CO(g) and  [tex]O_{2}[/tex](g) in a 1.1-L container at 1.0x10^3 K with an initial total pressure of 2.3 atm and a final total pressure of 1.8 atm, follow these steps:

1. Calculate the initial moles of the gas mixture:
Use the ideal gas law, PV = nRT. Rearrange to solve for n: n = PV / RT.
Initial moles (n_initial) = (2.3 atm)(1.1 L) / (0.0821 L atm/mol K)(1.0x10^3 K)

= 0.0309 moles.

2. Calculate the final moles of the gas mixture:
Final moles (n_final) = (1.8 atm)(1.1 L) / (0.0821 L atm/mol K)(1.0x10^3 K)

= 0.0241 moles.

3. Determine the moles of  [tex]CO_{2}[/tex] formed:
Moles of  [tex]CO_{2}[/tex] (n_ [tex]CO_{2}[/tex])

= n_initial - n_final = 0.0309 moles - 0.0241 moles

= 0.0068 moles.

4. Calculate the mass of  [tex]CO_{2}[/tex] formed:
Mass of  [tex]CO_{2}[/tex] (m_ [tex]CO_{2}[/tex])

= n_ [tex]CO_{2}[/tex] x molar mass of  [tex]CO_{2}[/tex]

= 0.0068 moles x 44.01 g/mol = 0.299 grams.

To know more about Partial Pressures:

https://brainly.com/question/13199169

#SPJ11

At 25 Celsius does hydrogen or nitrogen have the higher average kinetic energy?

Answers

Answer:

Yes

Explanation:

17×10−21 J/molecule.

The ΔH∘vap of a certain compound is 29.93 kJ⋅mol−1 and its Δvap∘ is 83.12 J⋅mol−1⋅K−1.What is the normal boiling point of this compound?

Answers

The normal boiling point of the compound is approximately 450.4K

How to calculate the boiling point of a compound?

The normal boiling point of a substance is the temperature at which its vapor pressure is equal to 1 atmosphere (atm). We can use the Clausius-Clapeyron equation to calculate the normal boiling point of the compound using the given information:

ln(P1/P2) = (-ΔHvap/R) * (1/T1 - 1/T2)

where P1 and P2 are the vapor pressures of the compound at temperatures T1 (normal boiling point) and T2 (known temperature), respectively, ΔHvap is the enthalpy of vaporization, R is the ideal gas constant (8.314 J/(mol*K)), and T1 and T2 are temperatures in Kelvin (K).

Given:

ΔHvap = 29.93 kJ/mol = 29.93 * 10^3 J/mol

ΔSvap = 83.12 J/(molK)

R = 8.314 J/(molK)

Plugging in the values:

ln(P1/1 atm) = (-29.93 * 10^3 J/mol)/(8.314 J/(molK) * T1) - (83.12 J/(molK)/T1)

Solving for Tb, we get:
Tb = (-ΔH∘vap/R) * (1/(ln(Pvap/1 atm)) + 1/Tref)

Substituting the given values, we get:
Tb = (-29.93 kJ⋅mol−1 / (8.314 J⋅mol−1⋅K−1)) * (1/(ln(Pvap/1 atm)) + 1/298 K)
Plugging in the values:

ln(P1/1 atm) = (-29.93 * 10^3 J/mol)/(8.314 J/(molK) * T1) - (83.12 J/(molK)/T1)

At the normal boiling point, the vapor pressure is 1 atm, so P1 = 1 atm.

Therefore, the normal boiling point of the compound is:
Tb = (-3602.2 K) * (1/(ln(1/1)) + 0.0033557)
Tb = 450.4 K

To know more about Clausius-Clapeyron equation:

https://brainly.com/question/15164257

#SPJ11

when a 4.00 g sample of rbbr is dissolved in water in a calorimeter that has a total heat capacity of 1.39 kj⋅k−1, the temperature decreases by 0.380 k. calculate the molar heat of solution of rbbr.

Answers

The molar heat of solution of RbBr is 11.3 kJ/mol.

To calculate the molar heat of solution of RbBr, we can use the formula:

ΔHsoln = q / n

where ΔHsoln is the molar heat of solution, q is the heat absorbed or released during the dissolution process, and n is the number of moles of RbBr dissolved.

To find q, we can use the equation:

q = CΔT

where C is the heat capacity of the calorimeter and ΔT is the temperature change.

Substituting the given values into the equation, we have:

q = (1.39 kJ/K) × 0.380 K

q = 0.5282 kJ

Next, we need to calculate the number of moles of RbBr dissolved. The molar mass of RbBr is:

M(RbBr) = 85.47 g/mol

Therefore, the number of moles of RbBr dissolved is:

n = 4.00 g / 85.47 g/mol

n = 0.0468 mol

Now we can calculate the molar heat of solution of RbBr:

ΔHsoln = q / n

ΔHsoln = (0.5282 kJ) / (0.0468 mol)

ΔHsoln = 11.3 kJ/mol

Therefore, the molar heat of solution of RbBr is 11.3 kJ/mol.

Click the below link, to learn more about Molar heat:

https://brainly.com/question/29435378

#SPJ11

The molar heat of solution of RbBr is 11.3 kJ/mol.

To calculate the molar heat of solution of RbBr, we can use the formula:

ΔHsoln = q / n

where ΔHsoln is the molar heat of solution, q is the heat absorbed or released during the dissolution process, and n is the number of moles of RbBr dissolved.

To find q, we can use the equation:

q = CΔT

where C is the heat capacity of the calorimeter and ΔT is the temperature change.

Substituting the given values into the equation, we have:

q = (1.39 kJ/K) × 0.380 K

q = 0.5282 kJ

Next, we need to calculate the number of moles of RbBr dissolved. The molar mass of RbBr is:

M(RbBr) = 85.47 g/mol

Therefore, the number of moles of RbBr dissolved is:

n = 4.00 g / 85.47 g/mol

n = 0.0468 mol

Now we can calculate the molar heat of solution of RbBr:

ΔHsoln = q / n

ΔHsoln = (0.5282 kJ) / (0.0468 mol)

ΔHsoln = 11.3 kJ/mol

Therefore, the molar heat of solution of RbBr is 11.3 kJ/mol.

Click the below link, to learn more about Molar heat:

https://brainly.com/question/29435378

#SPJ11

Other Questions
Hannah is an aspiring medical student interested in decreasing the number of deaths associated with cancer through early detection. One way to detect cancer early on is with dogs who can smell biochemical differences in cancer patients. Hannah would like to utilize this method by creating a canine training program at her university. She has a rudimentary understanding of learning theory and will use this knowledge to train a newly adopted dog named Walter. She believes that positive punishment will be the most effective way to train a dog to sniff out cancer but wants to explore all of her options.Part AAnswer the following questions as they related to Hannah's proposed experiment.What is a valid operational definition for canine cancer detection?What is an example of positive punishment in this context?Part BThe graph above compares the success rates in early cancer detection of four different dogs across ten trials. Use this information to answer the questions below.Explain the research design used to obtain the data collected.Explain the reinforcement schedule most likely applied to Walter.Discuss how the data does or does not support the hypothesis. I need help solving this question Pepperdine reported net sales of 8,500 million, net income of $126 million and average accounts receivable , net of $680 million accounts receivable turnover is:A ) 0.08 .B) 12.5 .C ) 67.5D) 5.4E) 15.3 . Draw Nicotinamide adenine dinucleotide in the oxidized and reduced form. Is this a coenzyme or prosthetic group? How do the characters conflicting motivations create tension? Cite evidence from the text in your response. Explain causes and effects of the various revolutions in the period from 1750 to 1900. Find the value of x in the diagram below. x+10 4x-30 2x+30 Traduce la frase a ingls."Yo quiero comprar la bicicleta, aunque no funcione."I want to buy the bike even though it does not work.I want to buy the bike even if it does not work.DenENNENtrifest A family of 6 is to be seated in a row. In how many ways can this be done if the father and mother are not to sit together. How is a cryptocurrency exchange different from a cryptocurrencywallet?A There is no difference since all wallets are hosted on exchanges.B Exchanges are only used to make transactions, not to store cryptocurrency.C Exchanges are offline whereas wallets are always connected to the internet.D An exchange controls your keys but you control your cryptocurrency. What is the molarity of a solution made by dissolving 0.01287 gKI to make 112.4 mL of solution? 0.1145MKI6.898104 MKI8.733MKI1.447MKI0.008714MKI Arya incurred a $23,000 nonbusiness bad debt last year. She also had an $19,000 long-term capital gain last year. Her taxable income for last year was an NOL of $15,000. During the current year, she unexpectedly collected $12,000 on the debt. How should Arya account for the collection y = |x - 5| + |x + 5| if x >5 Listening: Ser and EstarContesta segn la conversacion.1. Es De Nicaragua Nora?2. De qu Nacionalidad es?3. Quin ms es de Venezuela?4. Dnde estn la dos muchachas ahora?5. Estn ellas en la misma clase de ingls?.6. Cmo es Nora?7. Siempre est contenta? One large jar and two small jars together can hold 8 ounces of jam. One large jar minus one small jar can hold 2 ounces of jam.A matrix with 2 rows and 2 columns, where row 1 is 1 and 2 and row 2 is 1 and negative 1, is multiplied by matrix with 2 rows and 1 column, where row 1 is l and row 2 is s, equals a matrix with 2 rows and 1 column, where row 1 is 8 and row 2 is 2.Use matrices to solve the equation and determine how many ounces of jam are in each type of jar. Show or explain all necessary steps. What are the sources of inefficiency for water allocation in the U.S? Restrictions on transfers Federal reclamation projects and agricultural water pricing Common property or open access problems Instream flows Disputes between various agenceis and countries such as Mexico and the US over water rights Costs of provding water to the public. Municipal and industrial water pricing Consider the market for Teslas. The price of gasoline decreases and the cost of producing Tesla batteries decrease. How will the market for Teslas respond?aprices will fall and the equilibrium quantity may or may not change.bprices will fall and the equilibrium quantity will decrease.cprices will fall and the equilibrium quantity will increase.dThere is not enough information to answer the question An acid mixture contains 1.75 M CH3COOH (Ka = 1.8 105) and 0.50 M HCN (Ka = 4.9 1010). What is the pH of the solution?a. 2.25b. 0.24c. 4.81d. 0.35e. 0.30 What is the approximate temperature of each of these regions?1.photosphere:A. 4500K to 6800KB. 10^4 K to 10^6 KC. 10^4 KD. A few million K2. Chromosphere:A. 4500K to 6800KB. 10^4 K to 10^6 KC. 10^4 KD. A few million K3. Corona:A. 4500K to 6800KB. 10^4 K to 10^6 KC. 10^4 KD. A few million K What is the angle of QRT?