A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 22.9° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 50.7 kg, and the coefficient of kinetic friction between the skis and the snow is 0.144. Calculate the magnitude of the force that the tow bar exerts on the skier.

Answers

Answer 1

The magnitude of the force exerted by the tow bar on the skier can be calculated using the principles of Newton's second law and considering the forces acting on the skier. The force applied by the tow bar is equal to the sum of the gravitational force and the force of kinetic friction.

The gravitational force acting on the skier can be calculated as the product of the skier's mass (m) and the acceleration due to gravity (g), which is approximately 9.8 m/s². Thus, the gravitational force is given by [tex]F_{gravity} = m g[/tex].

The force of kinetic friction can be determined using the equation [tex]F_{friction} = \mu \times N[/tex], where μ is the coefficient of kinetic friction and N is the normal force. The normal force is equal to the component of the gravitational force perpendicular to the slope, which is given by [tex]N = mg cos(\theta)[/tex], where [tex]\theta[/tex] is the angle of inclination.

Since the skier is pulled up the slope at a constant velocity, the net force acting on the skier is zero. Therefore, the force exerted by the tow bar is equal in magnitude but opposite in direction to the sum of the gravitational force and the force of kinetic friction. Thus, the magnitude of the force exerted by the tow bar on the skier can be calculated as follows:

[tex]F_{\text{tow bar}} = F_{\text{gravity}} + F_{\text{friction}} \\\\F_{\text{tow bar}} = m \cdot g + \mu \cdot N \\\\\[ F_{\text{tow bar}} = m \cdot g + \mu \cdot m \cdot g \cdot \cos(\theta)[/tex]

Plugging in the given values: mass (m) = 50.7 kg, coefficient of kinetic friction (μ) = 0.144, angle of inclination [tex](\theta)[/tex] = 22.9°, and acceleration due to gravity (g) ≈ 9.8 m/s², we can calculate the magnitude of the force exerted by the tow bar on the skier.

To learn more about Newton's second law refer:

https://brainly.com/question/25545050

#SPJ11


Related Questions

Do convex lens converge or diverge the light rays?

Answers

Answer:

converge

plz mark me as brainliest.

Convex lenses converge

Two identical planets orbit a star in concentric circular orbits in the star's equatorial plane. Of the two, the planet that is farther from the star must have a. the smaller period. b the greater period. c. the smaller gravitational mass. d. the larger gravitational mass. e the larger universal gravitational constant.

Answers

Two identical planets orbit a star in concentric circular orbits in the star's equatorial plane. The planet that is farther from the star must have a greater period than the planet that is closer to the star. The correct answer is option(b).

The period of the planet is directly proportional to the cube of its distance from the star. As a result, when planets are equidistant from a star, their periods will be equal.As a result, the planet that is farther from the star must have a greater period than the planet that is closer to the star.

A planet's gravitational mass is not influenced by the planet's distance from the star, so alternatives c and d can be ruled out. Similarly, the planet's universal gravitational constant is not affected by the planet's distance from the star, so option e can also be ruled out. The planet's period, on the other hand, is influenced by the distance from the star and the planet's mass. As a result, the option a can be ruled out.

To know more about planets refer to:

https://brainly.com/question/14323720

#SPJ11

Pressure is ______________ to the force applied.



inversely proportional



directly proportional



not related

Answers

Explanation:

inversely proportional

Answer:

directly proportional to force applied

A bow is pulled back a distance x and fires an arrow straight up into the air, where it reaches a height h. The same bow is now pulled back 3x and fires a second, identical arrow straight up into the air. What height does the 2nd arrow reach relative to the first arrow's height h?

Answers

The second arrow reaches a height that is three times the height h reached by the first arrow.

The height reached by the second arrow relative to the first arrow's height can be determined by considering the conservation of mechanical energy.

When the first arrow is fired, it experiences initial potential energy due to its initial height and kinetic energy due to its initial velocity. As it reaches its maximum height h, its potential energy is at its maximum while its kinetic energy becomes zero.

The total mechanical energy (sum of potential and kinetic energy) is conserved throughout its flight.

Now, when the second arrow is fired, it is pulled back three times farther, so it has three times the initial potential energy compared to the first arrow. However, since both arrows are identical, they have the same mass and the same initial kinetic energy.

This means the second arrow has a higher total mechanical energy at the start.

When the second arrow reaches its maximum height, the total mechanical energy is again conserved, but this time its potential energy is three times higher than that of the first arrow. Therefore, the height reached by the second arrow is three times the height h of the first arrow.

Learn more about height:

https://brainly.com/question/12446886

#SPJ11

The Earth's gravitational force on the Sun is
a. The Sun does not exert any gravitational force on the Earth. b. Larger than the Sun's gravitational force on the Earth. c, Equal to the Sun's gravitational force on the Earth. d, Smaller than the Sun's gravitational force on the Earth.

Answers

The Earth's gravitational force on the Sun is equal to the Sun's gravitational force on the Earth.

According to Newton's law of universal gravitation, the gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Mathematically, it can be expressed as F = G * (m1 * m2) / r^2, where F is the gravitational force, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers.

When considering the gravitational interaction between the Earth and the Sun, the masses involved are the mass of the Earth (m1) and the mass of the Sun (m2). The distance between their centers is the average distance between the Earth and the Sun, known as the astronomical unit (AU), which is approximately 149.6 million kilometers or 93 million miles.

The masses of the Earth and the Sun are significantly different, with the Sun being much more massive than the Earth. However, the distance between their centers is also very large.

Given that the gravitational force between two objects is determined by the product of their masses and inversely proportional to the square of the distance, the gravitational force exerted by the Earth on the Sun is equal in magnitude but opposite in direction to the gravitational force exerted by the Sun on the Earth.

The Earth's gravitational force on the Sun is equal in magnitude but opposite in direction to the Sun's gravitational force on the Earth. The masses of the objects and the distance between them play a role in determining the strength of the gravitational force, and in this case, the forces are balanced and equal.

To know more about gravitational force, visit

https://brainly.com/question/72250

#SPJ11

A contour map has 14 concentric circles, each placed 1/2 centimeters apart. The map's scale indicates 1cm = 10 ft. What is the structure, and what are its dimensions?

Answers

Answer:

B. A hill 70ft tall.

Explanation:

a conducting sphere of radius 0.06 m has a charge per area 0.9 mc/m2 (milli-coulomb/meter2) distributed uniformly on its surface. there is no unbalanced charge on the sphere except on the surface. what is the total charge on the sphere?

Answers

Therefore, the total charge on the sphere is 0.040716 C or 40.716 mC (milli-coulombs).

The given information regarding the sphere is:

Radius of the sphere, r = 0.06 m, Charge per unit area on the surface of the sphere, σ = 0.9 mc/m² (milli-coulomb/meter²)

The total charge on a sphere can be calculated by multiplying the charge density (charge per unit area) with the total surface area of the sphere.

The total surface area of the sphere is given by:

A = 4πr².

On substituting the given values of r and σ, we get:

A = 4 × π × (0.06)² = 0.04524 m²

Charge on the sphere,

q = σ × A = 0.9 × 0.04524

q= 0.040716 C (coulombs).

to know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

If the Sun, Earth, and Moon are lined up as shown, the Earth would have______.

A. Spring tides where there is almost no difference in the tides

B. Spring tides, which is where there are very high tides and very low tides

C. Neap tides where there is almost no difference in the tides.

D. Neap tides, which is where there are very high tides and very low tides

Answers

Answer:

The answer is B. Spring tides, which are where there are very high tides and very low tides.

Explanation:

Spring tides occur when the sun and the moon are in alignment with Earth.

At the time of a new moon or full moon when the sun, earth, and the moon are in full alignment the solar tide affects the lunar tide leading to the creation of extra-high high tides, and very low, low tides. The basic reasons for this phenomenon are the gravity of the sun and the moon is acting on the earth ocean

Please thank my answer and vote. (Maybe mark brainliest please)

Explain how it is that you could have 2 parents with brown eyes, but you have blue eyes. Talk about the role chromosomes, genotypes, and alleles play in making something like that happen.

Help please will give b to the best one!

Answers

Answer:

Because the two genes depend on each other, it is possible for someone to actually be a carrier of a dominant trait like brown eyes.  And if two blue eyed parents are carriers, then they can have a brown eyed child.  Genetics is much bkj

Explanation:

So all you light eyed parents with dark eyed kids, stop asking those paternity questions (unless you have other reasons to be suspicious).  Darker eyed kids are a real possibility that can now be explained with real genes.  

A plane wave propagates in a lossy medium having E=2580, u=uo, and o=5 S/m at frequency f=1000 Hz. a) Is the lossy medium a low-loss dielectric, a good conductor, or neither? Explain. Using appropriate approximations if possible, find numerical values for the attenuation and phase constants a and ß in the lossy medium. (Leave your answers in units of neper/m and radian/m, respectively.) What is the attenuation e-a in dB/m? Provide a numerical value for the complex intrinsic impedance n, using appropriate approximations if possible

Answers

The lossy medium described is a good conductor. The values for the attenuation constant (α) and phase constant (β) can be calculated using the provided formulas, considering the appropriate approximations.

Explanation and calculation: To determine whether the lossy medium is a low-loss dielectric, a good conductor, or neither, we can compare the conductivity (σ) of the medium to the frequency (f) of the wave. In this case, the conductivity is 5 S/m and the frequency is 1000 Hz.

If the conductivity is much larger than the product of the frequency and the permittivity of free space (σ >> ωε₀), the medium is considered a good conductor. If the conductivity is much smaller than the product of the frequency and the permittivity of free space (σ << ωε₀), the medium is considered a low-loss dielectric.

In this case, since the conductivity (5 S/m) is significantly larger than the product of the frequency (1000 Hz) and the permittivity of free space, we can conclude that the lossy medium is a good conductor.

To calculate the attenuation constant (α) and phase constant (β), we can use the formulas:

α = √(ωμ₀σ/2)

β = √(ω²μ₀ε₀ - α²)

where ω = 2πf is the angular frequency, μ₀ is the permeability of free space, and ε₀ is the permittivity of free space.

Substituting the given values, ω = 2π(1000 Hz), μ₀ = 4π × 10^(-7) T·m/A, and ε₀ = 8.854 × 10^(-12) F/m, we can calculate α and β.

Using appropriate approximations, we can assume that ωμ₀σ is large and α ≈ √(ωμ₀σ/2) ≈ 1000 rad/m.

Substituting the values into the formula for β, we find:

β = √((2π(1000 Hz))²(4π × 10^(-7) T·m/A)(8.854 × 10^(-12) F/m) - (1000 rad/m)²)

Therefore, we can calculate the numerical values for α and β using the given formulas and approximations.

To know more about Conductor, visit

https://brainly.com/question/492289

#SPJ11

Conclusion: Suggest an equation relating Felect, q1, q2 and d of the form Felect = k•... where k is a proportionality constant (no need to determine its value). Place the three variables q1, q2 and d on the right side of the equation in a numerator or a denominator; use a power if needed. Your equation should be consistent with your claims made in Challenge #1 and Challenge #2. *I already solved the rest of the worksheet, I only need the conclusion.*

Answers

Answer:

[tex]F_{elect} = \frac{kq_1q_2}{d^2}[/tex]

Explanation:

Consider the given variables:

Felect = Electrostatic Force between charged particles

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of second charge

d = distance between the charges

The relationship among these variables is given by the Coulomb's Law:

[tex]F_{elect} = \frac{kq_1q_2}{d^2}[/tex]

This is the relationship that contains k, q₁, q₂, d on the right-hand side and Felect on the left-hand side.

A bumblebee can sense electric fields as the fields bend hairs on its body. Bumblebees have been conclusively shown to detect an electric field of 60 N/C . Suppose a bumblebee has a charge of 21 pC.
How far away could another bumblebee detect its presence?

Answers

Another bumblebee could detect the presence of the charged bumblebee from a distance of approximately 3.5 meters.

To determine the distance at which another bumblebee could detect the presence of the charged bumblebee, we can use Coulomb's law, which states that the electric force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

The formula for the electric force between two charges is given by:

F = (k * q1 * q2) / r^2

where F is the electric force, k is the electrostatic constant (approximately 9 × 10^9 N·m^2/C^2), q1 and q2 are the charges, and r is the distance between the charges.

Given that the electric field detected by the bumblebee is 60 N/C, we can relate the electric field to the electric force using the equation:

E = F / q

where E is the electric field and q is the charge.

Rewriting the equation to solve for the electric force:

F = E * q

Substituting the given values:

F = (60 N/C) * (21 × 10^-12 C)

Simplifying:

F = 1.26 × 10^-9 N

Rearranging the Coulomb's law equation to solve for the distance:

r = sqrt((k * q1 * q2) / F)

Substituting the values into the equation:

r = sqrt((9 × 10^9 N·m^2/C^2 * (21 × 10^-12 C)^2) / (1.26 × 10^-9 N))

Simplifying:

r ≈ 3.5 meters

Therefore, another bumblebee could detect the presence of the charged bumblebee from a distance of approximately 3.5 meters.

Another bumblebee could detect the presence of the charged bumblebee from a distance of approximately 3.5 meters. This is based on the ability of bumblebees to sense electric fields and the known electric field strength and charge of the bumblebee in question.

To know more about Coulomb Law visit:

https://brainly.com/question/506926

#SPJ11

A thin lens with a focal length of 6.00cm is used as a simple magnifier.
Part A
What angular magnification is obtainable with the lens if the object is at the focal point?
Part B
When an object is examined through the lens, how close can it be brought to the lens? Assume that the image viewed by the eye is at infinity and that the lens is very close to the eye.
Enter the smallest distance the object can be at from the lens.

Answers

Part A: The angular magnification when the object is at the focal point is 1.

Part B: The smallest distance the object can be from the lens is 6.00 cm.

Part A:

To find the angular magnification (M) when the object is at the focal point of a simple magnifier, we can use the formula

M = 1 + (D / f)

Where D is the least distance of distinct vision, which is typically taken as 25 cm for a normal eye, and f is the focal length of the lens.

In this case, the object is at the focal point, which means D becomes infinite since the eye is focused on the object at infinity. Plugging in the values, we have

M = 1 + (infinity / 6.00 cm) = 1 + 0 = 1

Therefore, the angular magnification when the object is at the focal point is 1.

Part B:

To determine the closest distance the object can be brought to the lens when it is viewed by the eye at infinity, we can use the formula

1 / (focal length) = 1 / (object distance) + 1 / (image distance)

Since the image distance is assumed to be at infinity, we can substitute ∞ for the image distance. Rearranging the equation, we get:

1 / (object distance) = 0 + 1 / (focal length)

1 / (object distance) = 1 / (6.00 cm)

Simplifying, we find

(object distance) = 6.00 cm

Therefore, the smallest distance the object can be from the lens is 6.00 cm.

To know more about angular magnification here

https://brainly.com/question/28325488

#SPJ4

If weight=net force= gravitational force
why does weight= mass* gravitational field strength like mass and gravitational field strength are the same thing or is it not please help (I'll give brainliest)

Answers

Weight is the force experienced by an object due to gravity and is equal to the product of its mass and gravitational acceleration.

Weight is not equal to mass multiplied by gravitational field strength. Weight is actually the force experienced by an object due to gravity, and it is given by the equation:

Weight = mass * gravitational acceleration

The gravitational acceleration is denoted by "g" and represents the acceleration due to gravity at a particular location. It is a constant value and does not depend on the mass of the object. On the surface of the Earth, the average value of gravitational acceleration is approximately 9.8 m/s^2.

So, the correct equation for weight is:

Weight = mass * gravitational acceleration

The reason weight is equal to the product of mass and gravitational acceleration is due to Newton's second law of motion. According to this law, the force acting on an object is equal to the product of its mass and acceleration. In the case of weight, the force acting on an object is the gravitational force, which is proportional to its mass (through the equation F = ma) and the gravitational acceleration.

Therefore, It's important to note that mass and gravitational field strength are not the same thing. Mass is a property of matter that measures the amount of material in an object, while gravitational field strength (or gravitational acceleration) is a measure of the intensity of the gravitational field at a specific location.

To learn more about Mass and weight click:

brainly.com/question/28704035

#SPJ1


Q3. If each tape represents the distance travelled by the object for 1
second, then what 'quantity' does each piece of tape provide?​

Answers

No clue brother this one diff kit

Please Help I'll Make You Brainliest
The gravitational pull will be lowest between which two spheres?

Answers

{Answer}
A- (10kg sphere and 30m)

{I hope this helps :) }

A solenoid 28.0 cm long and with a cross-sectional area of 0.590 cm ^2 contains 405 turns of wire and carries a current of 80.0 A. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Storing energy in an inductor. Calculate the magnetic field in the solenoid (assume the field is uniform Express your answer in teslas.

Answers

The magnetic field inside the solenoid is 0.0001454 T.

Use the formula for the magnetic field inside a solenoid:

B = μ₀ (NI) / L

Where:

B is the magnetic field,

μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A),

N is the number of turns of wire,

I is the current flowing through the wire, and

L is the length of the solenoid.

Given:

Length of the solenoid (L) = 28.0 cm = 0.28 m

Cross-sectional area of the solenoid (A) = 0.590 cm² = 0.590 × 10⁻⁴ m²

Number of turns of wire (N) = 405

Current flowing through the wire (I) = 80.0 A

Substituting the given values into the formulae:

B = (4π × 10⁻⁷ T·m/A)  (405 turns × 80.0 A) / 0.28 m

B = (4π × 10⁻⁷ T·m/A)  (32,400 turns·A) / 0.28 m

B = 4π × 10⁻⁷ × 32,400 / 0.28 T

B = 4π × 10⁻⁷ × 116,142.857 T

B = 1.454 × 10⁻⁴ T

To learn more about the magnetic field, follow the link:

https://brainly.com/question/14848188

#SPJ4

a 100 kg hoop rolls along a horizontal floor so that its center of mass has a speed of 0.0830 m/s. how much work must be done on the hoop to stop it?

Answers

The work done on the hoop to stop it is 0.344 Joules.

What is work done?

Work is defined as the transfer of energy that occurs when a force is applied to an object, causing it to move in the direction of the force. Work is the product of the force applied to an object and the displacement of the object in the direction of the force.

Given:

Mass of the hoop (M) = 100 kg

Speed of the center of mass (v) = 0.0830 m/s

Radius of the hoop (R) = ?

To find the radius (R) of the hoop, we can use the relationship between linear and angular velocity:

v = R * ω

Rearranging the equation, we get:

R = v / ω

We need to find the angular velocity (ω) of the hoop. Using the relationship between linear velocity and angular velocity, we have:

ω = v / R

Substituting the given values, we can calculate the angular velocity:

ω = 0.0830 m/s / R

Next, we can calculate the moment of inertia (I) of the hoop:

I = MR^2

Substituting the mass and radius, we get:

I = 100 kg * R^2

Now, we can calculate the initial kinetic energy (KE_initial) of the hoop:

KE_initial = (1/2) * I * ω^2

Substituting the values, we have:

KE_initial = (1/2) * (100 kg * R^2) * (0.0830 m/s / R)^2

Simplifying the equation, we get:

KE_initial = (1/2) * 100 kg * 0.0830^2 m^2/s^2

Finally, the work done on the hoop to stop it is equal to the initial kinetic energy:

Work = KE_initial

Substituting the values, we have:

Work = (1/2) * 100 kg * 0.0830^2 m^2/s^2

Calculating the value, we find:

Work ≈ 0.344 J

Therefore, the work done on the hoop to stop it is 0.344 Joules.

To learn more about work done,

https://brainly.com/question/21854305

#SPJ4

(Click the picture)

What is the source of energy that will send the arrow flying toward the target?

A- The archers ability to aim correctly
B- The arrow’s distance from the ground
C- The springiness of the bow
D- The time it takes to release the bow

Answers

Answer:

a

Explanation:

cause her hand is straight and she followed the direction it sould be correctly unless I am messing something

1. The force on the last car of a train with a mass of 4.5 kg is 8.0 N. What is the train's acceleration in m/s2?

2. Observe the table. How many times greater must the acceleration of Object B be than the acceleration of Object A to make the table true?
Enter your answer as a whole number, like this: 4

Answers

1. The force on the last car of a train with a mass of 4.5 kg is 8.0 N. What is the trains acceleration in m/s2?
answer = 1.78
The Fortnite of a steam locomotive is the park in a while the president of president in a

which is the correct range for the temperature danger zone? question 2 options: 0-32f 40-100f 40-140f 100-200f

Answers

The correct range for the temperature danger zone is 40-140°F.

The temperature danger zone refers to the range of temperatures in which bacteria can grow and multiply rapidly, posing a risk of foodborne illnesses. The correct range for the temperature danger zone is 40-140°F (4-60°C). Within this temperature range, bacteria can multiply quickly, reaching dangerous levels that can lead to food poisoning.

Temperatures below 40°F (4°C) can slow down bacterial growth, while temperatures above 140°F (60°C) can kill most bacteria. However, between 40-140°F, bacteria thrive and can double in number every 20 minutes, increasing the risk of foodborne illnesses.

Maintaining proper temperature control is crucial in food safety to prevent bacterial growth and minimize the risk of foodborne illnesses. This is particularly important for perishable foods such as meats, poultry, fish, dairy products, cooked rice, and cooked vegetables.

To ensure food safety, it is recommended to keep cold foods below 40°F (4°C) and hot foods above 140°F (60°C).

Learn more about temperature danger zone here:

https://brainly.com/question/1473886

#SPJ11

scientists in the laboratory create a uniform electric field e⃗ = 6.0×105 k^v/m in a region of space where b⃗ =0⃗ .
Part A
What are the components of the electric field in the reference frame of a rocket traveling in the positive x-direction at 1.1×106 m/s ?
Express your answer using two significant figures separated by commas.
Part B
What are the components of the magnetic field in the reference frame of the rocket?
Express your answer using two significant figures separated by commas.

Answers

Part A:

In the reference frame of the rocket traveling in the positive x-direction at 1.1×10⁶ m/s, the components of the electric field are Eₓ = 6.6×10⁵ V/m and Eₓ = 0 V/m.

Part B:

In the reference frame of the rocket, the components of the magnetic field are Bₓ = 0 T and Bₓ = 0 T.

Find the component of electric field in the reference frame?

In Part A, to determine the components of the electric field in the rocket's reference frame, we need to account for the relativistic effects due to its velocity. Since the magnetic field is zero (b⃗ = 0⃗), we only need to consider the transformation of the electric field.

According to the relativistic transformation of electric fields, the electric field components perpendicular to the rocket's velocity remain unchanged, while the component parallel to the velocity is transformed.

In this case, the rocket is moving along the x-direction, so the perpendicular component, Eₓ, remains the same (6.0×10⁵ V/m). The parallel component, Eₓ, however, is affected by the Lorentz transformation and is given by Eₓ' = γ(Eₓ - vB_y), where γ is the Lorentz factor (γ = 1/√(1 - v²/c²)), v is the velocity of the rocket, and B_y is the magnetic field component perpendicular to both the x-axis and the rocket's velocity. Since B_y is zero, the transformed Eₓ' becomes 0 V/m.

In Part B, since the magnetic field is zero in the laboratory frame (b⃗ = 0⃗), it remains zero in the rocket's reference frame as well. The absence of a magnetic field in the rocket's frame is a consequence of the relative motion and the lack of any magnetic field in the laboratory frame.

Therefore, the components of the magnetic field, Bₓ and Bₓ, are both zero Tesla (0 T).

To know more about motion, refer here:

https://brainly.com/question/2748259#

#SPJ4

A thin layer of magnesium fluoride (n=1.38) is used to coat a flint glass lens ( n=1.61). (a) What thickness should the magnesium fluoride film have if the reflection of 565 nm light is to be suppressed? Assume that the light is incident at right angles to the film. (b) If it is desired to suppress the reflection of light with a higher frequency, should the coating of magnesium fluoride be made thinner or thicker? Explain.

Answers

(a) The thickness of the magnesium fluoride film should be approximately 120 nm to suppress the reflection of 565 nm light.

(b) To suppress the reflection of light with a higher frequency, the coating of magnesium fluoride should be made thinner.

(a) The condition for suppressing reflection is given by the equation:

2nt = mλ

where n is the refractive index of the film, t is the thickness of the film, m is an integer representing the order of the interference, and λ is the wavelength of light.

For reflection suppression of 565 nm light, we can substitute the given values:

2(1.38)t = λ

2(1.38)t = 565 nm

t = (565 nm) / (2(1.38))

t ≈ 120 nm

Therefore, the thickness of the magnesium fluoride film should be approximately 120 nm to suppress the reflection of 565 nm light.

(b) To suppress the reflection of light with a higher frequency, the coating of magnesium fluoride should be made thinner. This is because higher frequencies correspond to shorter wavelengths. As the wavelength decreases, the required thickness of the film for interference suppression decreases. So, a thinner coating of magnesium fluoride would be needed to achieve reflection suppression for higher-frequency light.

(a) To suppress the reflection of 565 nm light, the magnesium fluoride film should have a thickness of approximately 120 nm.

(b) To suppress the reflection of light with a higher frequency, the coating of magnesium fluoride should be made thinner. This is because higher frequencies correspond to shorter wavelengths, requiring a smaller film thickness for interference suppression.

To know more about reflection visit:

https://brainly.com/question/26494295

#SPJ11

Question:
Define Force​

Answers

Force is push or pull....

thank you

An electric motor consumes 8.00kJ of electrical energy in 1.00min. If one-third of this energy goes into heat and other forms of internal energy of the motor, with the rest going to the motor output how much torque will this engine develop if you run it at 2000rpm ?

Answers

The electric motor will develop a torque of approximately 1.27 Nm when run at 2000 rpm.

To calculate the torque developed by the electric motor, we need to use the relationship between power, torque, and rotational speed (rpm). Power is given by the formula:

Power = Torque × Angular velocity

where Angular velocity = 2π × (rpm/60) (converted from rpm to rad/s).

Given that the motor consumes 8.00 kJ of electrical energy in 1.00 min, we can convert this energy to joules:

8.00 kJ = 8.00 × 10^3 J

Since one-third of the energy goes into heat and other forms of internal energy, two-thirds of the energy is converted to motor output. Therefore, the energy converted to motor output is:

(2/3) × 8.00 × 10^3 J = 16/3 × 10^3 J

≈ 5,333 J

Now, we can calculate the power:

Power = Energy / Time

Given that the time is 1.00 min = 60 s:

Power = (5,333 J) / (60 s)

≈ 88.9 W

To find the torque, we rearrange the power formula:

Torque = Power / Angular velocity

Angular velocity = 2π × (2000 rpm / 60)

= (2π/60) × 2000 rad/s

Substituting the values into the formula:

Torque = (88.9 W) / [(2π/60) × 2000 rad/s]

Simplifying the equation:

Torque ≈ 1.27 Nm

Therefore, the electric motor will develop a torque of approximately 1.27 Nm when run at 2000 rpm.

When the electric motor is run at 2000 rpm, it will develop a torque of approximately 1.27 Nm.

To know more about Torque visit:

https://brainly.com/question/17512177

#SPJ11

A battery has am emf of 15 V and internal resistance of 1Ω. In the terminal potential difference less than, equal to or greater than 15V if the current in the battery is (i) from negative to positive terminal, (ii) from positive to negative terminal (iii) zero current ?
a. Less, Greater, Equal
b. Less, Less, Equal
c. Greater, Greater, Equal
d. Greater, Less, Equal

Answers

A battery has am emf of 15 V and internal resistance of 1Ω. In the terminal potential difference less than, equal to or greater than 15V if the current in the battery is (a) Less from negative to positive terminal, Greater from positive to negative terminal Equal zero current.

The terminal potential difference ([tex]V_t[/tex]) in a battery can be calculated using the equation:

[tex]V_t[/tex] = emf - (I * r)

Where emf is the electromotive force of the battery, I is the current flowing through the battery, and r is the internal resistance of the battery.

Based on the given information, the battery has an emf of 15 V and an internal resistance of 1 Ω.

(i) When the current flows from the negative to the positive terminal:

[tex]V_t[/tex] = 15 - (I * 1)

Since the internal resistance is subtracted, the terminal potential difference will be less than 15V.

(ii) When the current flows from the positive to the negative terminal:

[tex]V_t[/tex] = 15 + (I * 1)

Since the internal resistance is added, the terminal potential difference will be greater than 15V.

(iii) When there is zero current flowing:

[tex]V_t[/tex] = 15 - (0 * 1)

Since the current is zero, the terminal potential difference will be equal to the emf, which is 15V.

Therefore, the correct option is: (a) Less, Greater, Equal

To know more about the battery refer here :

https://brainly.com/question/21567100#

#SPJ11

An entertainer pulls a table cloth off a table leaving behind the plates and sliverware undisturbed is an example of
A.
the law of balanced forces
B.
Newton's second law
C.
Newton's third law
D.
Newton's first law

Answers

Answer:

d.) Newton's first law

Explanation:

This is also called the law of inertia, which means that an object in motion will not stop unless a force is acted upon it, and vice versa. Try this out with a piece of paper and a quarter. Pull the paper from under the quarter slightly quick, and the quarter will stay on the table. Hope i helped you.

a stone is thrown vertically upward with a speed of 12m/s fromthe edge of a cliff 70 m high (a) how much later it reaches the bottom ofthe cliff? (b) what is its speed just before hitting? and (c) what totaldistance did it travel?

Answers

a)Therefore, it will take 3.58 seconds for the stone to reach the bottom of the cliff. b)So, its speed just before hitting the ground will be 12 m/s, but in the downward direction. c) Therefore, the total distance traveled by the stone is 21.504 + 64.2564 = 85.76 meters.

a) The stone is thrown vertically upward with a speed of 12 m/s from the edge of a cliff 70 m high.

determine the time it will take for the stone to reach the bottom of the cliff, we can use the kinematic equation, which is as follows:

s = ut + 0.5at²

Where s is the distance covered, u is the initial velocity, t is the time taken, and a is the acceleration. Since the stone is thrown upwards, the acceleration is -9.8 m/s² (negative because it is acting in the opposite direction of motion).

Using the above equation, we can find out the time it will take for the stone to reach the bottom of the cliff.

We take s = 70 m, u = 12 m/s, and a = -9.8 m/s².

t = √(2s/a-u²/a²)

t = √(2 × 70/9.8 - 12²/9.8²)

t = √(14.29 - 1.4694)

t = √12.8206t = 3.58 seconds

Therefore, it will take 3.58 seconds for the stone to reach the bottom of the cliff.

b) Just before hitting the ground, the stone will have the same speed as it had initially when it was thrown upwards, but in the opposite direction. So, its speed just before hitting the ground will be 12 m/s, but in the downward direction.

c) To calculate the total distance traveled by the stone, we can use the formula:

s = ut + 0.5at²

Here, s is the total distance traveled, u is the initial velocity, t is the time taken to reach the maximum height, and a is the acceleration due to gravity. When the stone is thrown upwards, it comes to rest at its maximum height, which is given by:

h = u²/2gt

Where h is the maximum height attained by the stone.

Therefore, h = (12²/2 × 9.8) = 7.35 meters

Now, to find the total distance traveled by the stone, we can use the above formula twice, once for the upward journey and once for the downward journey, and add the two distances.

s = ut + 0.5at²

s   = 12 × 3.58 + 0.5 × (-9.8) × 3.58²

s   = 21.504 - 64.2564

s = ut + 0.5at²

 s = 0 × t + 0.5 × (-9.8) × 3.58²

  s= 64.2564

Therefore, the total distance traveled by the stone is 21.504 + 64.2564 = 85.76 meters.

to know more about speed visit:

https://brainly.com/question/17661499

#SPJ11

Calculate the acceleration due to gravity on the Moon. The radius of theMoon is about 1.74 x 10^6 mand its mass is 7.35 x 10^22kg.

Answers

The acceleration due to gravity on the Moon is approximately 1.622 m/s^2.The acceleration due to gravity on the Moon can be calculated using Newton's law of universal gravitation. The formula is given by:

a = G * (M / r^2)

Where:
a = acceleration due to gravity
G = gravitational constant (approximately 6.67430 x 10^-11 m^3/kg/s^2)
M = mass of the Moon
r = radius of the Moon

Given the mass of the Moon (M = 7.35 x 10^22 kg) and the radius of the Moon (r = 1.74 x 10^6 m), we can substitute these values into the formula:

a = (6.67430 x 10^-11 m^3/kg/s^2) * (7.35 x 10^22 kg) / (1.74 x 10^6 m)^2

Simplifying the equation:

a = (6.67430 x 10^-11 m^3/kg/s^2) * (7.35 x 10^22 kg) / (3.0276 x 10^12 m^2)

a ≈ 1.622 m/s^2

Therefore, the acceleration due to gravity on the Moon is approximately 1.622 m/s^2.

To calculate the acceleration due to gravity on the Moon, we used Newton's law of universal gravitation, which relates the mass and distance between two objects to the gravitational force between them. By rearranging the formula and substituting the given values of the Moon's mass and radius, we obtained the acceleration due to gravity.

The acceleration due to gravity on the Moon is significantly lower than that on Earth. While Earth's gravity is approximately 9.8 m/s^2, the Moon's gravity is only about 1.622 m/s^2. This reduced gravitational pull is due to the Moon's smaller mass and radius compared to Earth. The lower gravity on the Moon has various effects on its environment, such as the ability for objects to be lifted more easily and astronauts experiencing a sense of weightlessness.

To know more about Gravitation,visit:
https://brainly.com/question/3009841
#SPJ11

3. Which of the following is true about astronauts taking out the TRASH?
They let it float off into space
They burn it inside the space station
They place it into a spacecraft and let it fall into the atmosphere

Answers

Answer:

C

Explanation:

When trash accumulates, astronauts manually squeeze it into trash bags, temporarily storing almost two metric tons of it for relatively short durations, and then send it away in a departing commercial supply vehicle, which either returns it to Earth or incinerates it during reentry through the atmosphere.

Other Questions
Can someone please help me with math. children with adhd who are at increased risk for conduct or oppositional problems are those who exhibit ____. Which of the following statements represents a conflict perspective of capitalism?a. Capitalism maintains the order of society through efficiency.b. Capitalism provides people with the goods and services they need. c. Capitalism is not a source of stability for society but instead creates more economic inequality.d. None of these represent a conflict perspective of capitalism. Es fills his sport bottle wit 1.2 liter of water how much milliliters of water is in ed sport bottle Which of the following is not an example of structural unemployment? Select the correct answer below: Morgan never finished high school and has trouble finding work that she is qualified for. Companies in her area have declined to hire her. O Will has been offered a job on the other side of the country. Before he can start working, he expects to need around a month to sell his house and move to the new location. Molly completed an advanced degree in a highly specific engineering discipline. Since graduating, she has not been able to find a job that matches her expertise. Steven lost his manufacturing job when the company he worked for shut down. There are no other opportunities for him in the same industry and he lacks the skills to pursue other types of work. Determine whether the following production functions are constant, decreasing, or increasing returns to scale. a. F(K,L) = 3K + 2L b. F(K,L)= K/312/3 c. F(K,L)= K/ + /2 | d. F(K,L) = 3K + 2L+1 how many equivalents of mg 2 are present in a solution that contains 2.75 mol of mg 2? What is the present value of $2700 to be received in 15 years, assuming an interest rate of 12 percent, quarterly compounding? $367.89 $469.89 $458.28 O $465.68 A kitten embryo is growing inside the uterus of a cat. What is happening to the cells of the kitten embryo?A) Mitosis, the cells are differentiatingB) Meiosis, the cells are differentiatingC) Meiosis, the genes are being shuffled aroundD) Mitosis, genes are being shuffled aroundPlease answer and don't put fake answer I really need this right. What does it seem like the country is full of in the 20s?a) Pessimismb) Optimismplease answer the question Which of these materials would be most useful in terms of retaining residue evidence in an explosion?O A bronze statueO Wall insulationOA concrete wallO A steel barricade ____1. What is the importance of speedometer in vehicles? x - 36 = 205 what is it and x + 127 = 30074 = x 1,068 x - 47 = 47 Tyler has to choose which hotel he wants to stay at on his upcoming vacation. He can stay at Modest Inn or he can stay at Massive Motel which has three times as many rooms as Modest Inn plus 5 additional rooms. How many rooms does Modest Inn have if they have 85 rooms between the two of them? A drought hits the habitat of a semi-aquatic bird population. All ponds dry up, and fish populations decline. There are two groups of birds in the population that differ in leg length and diet. Long-legged birds eat fish, while short-legged birds eat insects. The drought has little effect on insect populations. Please, help me............... Drag and drop each pair of lines to categorize them as either parallel, perpendicular, or neither. A hotel purchased a new office desk on April 15, 2018 and new executive style chars for the office on August 5, 2018. The office desk cost $950, and the chairs cost $1,900.Determine the total depreciation amount for 2020 assuming the taxpayer opted out of Sec. 179 and bonus (if available) in the your of purtase. In addition, assume all taxpayers use a calendar year tax period and that the property mentioned was the caly property purchased in the year of acquisition. Use the appropriate depreciation table from your note sheet textbook where necessary.I. $547II. $407III.$498IV. $478V. None of the answers given here. Who gave Leo theporcupine necktie? Choose all the possible solution that makes the inequality statement Truex + 15 35O 20, 21, 22O 18, 19, 20O -18,-19,-20O 50, 51, 52