A protein molecule in an electrophoresis gel has a negative charge. The exact charge depends on the pHpH of the solution, but 30 excess electrons is typical. What is the magnitude of the electric forceon a protein with this charge in a 1500 N/C electric field?

Answers

Answer 1

Answer:

The magnitude of the force = 7.2 × 10⁻¹⁵ C

Explanation:

The total quantization of charge q on an electron = n × e

where;

n = 30

e = 1.6 × 10⁻¹⁸ C

q = 30 ×  1.6 × 10⁻¹⁸ C

q = 4.8 × 10⁻¹⁸ C

Now, the magnitude of the force is determined by using the formula:

F = qE

F = ( 4.8 × 10⁻¹⁸ C) ( 1500  N/C)

F = 7.2 × 10⁻¹⁵ C


Related Questions

what happens if we add a lump of ice to a tumbler containing water? how does heat flow?​

Answers

Answer:

The ice will melt

Heat flows from the water to the ice

Explanation:

If we add a lump of ice to a tumbler containing water, the ice lump will melt in the water.

This is a simple physical change of state from solid to liquid.

At the end both the solid ice and the original liquid maintains the liquid state.

The heat will flow from the ice to the water in the tumbler. Heat generally flows from a body at higher temperature to one with a lower temperature. The water has a higher temperature when compared to the ice. So, heat flows from the liquid water to the ice until thermal equilibrium is reached.

Explain how momentum is determined and conserved.

ASAP!!

Answers

Answer:  momentum is determined and conserved.

Answer:

monument is determined

Find the value of F1 + F2 + F3.

Answers

Answer:

F = 0.78[N]

Explanation:

The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.

For F₁

[tex]F_{y}=2[N][/tex]

For F₂

[tex]F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N][/tex]

For F₃

[tex]F_{x}=-1*sin(60)\\F_{x}=-0.866[N]\\F_{y}=1*cos(60)\\F_{y}=0.5 [N][/tex]

Now we can sum each one of the forces in the given axes:

[tex]F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N][/tex]

Now using the Pythagorean theorem we can find the total force.

[tex]F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N][/tex]

Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s as it leaves the hose nozzle. Once it leaves the hose, the water moves in projectile motion. The firemen adjust the angle of elevation of the hose until the water takes 3.00 to reach a building 41.0m away. You can ignore air resistance; assume that the end of the hose is at ground level.

Required:
a. Find the angle of elevation of the hose.
b. Find the speed in m/s of the water at the highest point in its trajectory.
c. Find the acceleration in m/s^2 of the water at the highest point in its trajectory.
d. How high above the ground in m does the water strike the building?
e. How fast is it moving in m/s just before it hits the building?

Answers

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:vₓ₀ = v * cos θ (1)where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        [tex]x_{f} = v_{ox} * t = v_{o} * cos \theta * t (2)[/tex]

Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        [tex]cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)[/tex]

⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       [tex]\Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)[/tex]

Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)Replacing (7) in (6), we get:

       [tex]\Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)[/tex]

e)

When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.The horizontal component, since it keeps constant, is just v₀x:v₀ₓ = 13.7 m/sThe vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       [tex]v_{fy} = v_{oy} - g*t (9)[/tex]

Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       [tex]v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s (10)[/tex]

Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       [tex]v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)[/tex]

Two 13.0-cm-diameter electrodes 0.59 cm apart form a parallel-plate capacitor. The electrodes are attached by metal wires to the terminals of a 14 V battery. What is the charge on each electrode after insulating handles are used to pull the electrodes away from each other until they are 1.7 cm apart? The electrodes remain connected to the battery during this process. What is the electric field strength inside the capacitor after insulating handles are used to pull the electrodes away from each other until they are 1.7 cm apart? The electrodes remain connected to the battery during this process. What is the potential difference between the electrodes after insulating handles are used to pull the electrodes away from each other until they are 1.7 cm apart? The electrodes remain connected to the battery during this process.

Answers

Answer:

Explanation:

The capacitor is of parallel plate capacitor type

Capacitance C = ε₀ A / 4π d

ε₀  is 8.85 x 10⁻¹² , A  is plate area and  d is distance between plate .

d = 1.7 cm

C = 8.85 x 10⁻¹² x π x (6.5 x 10⁻² )² / 4π x 1.7 x 10⁻²

= 55 x 10⁻¹⁴F .

Charge on each electrode = C x V , V is voltage of battery .

= 55 x 10⁻¹⁴ x 14

= 770 x 10⁻¹⁴ C  

Electric field strength = V / d where V is potential difference of battery , d is distance between plate .

= 14 / 1.7 x 10⁻²

= 8.23 x 10² V / m

The potential difference between plate

= potential difference of the battery

= 14 V .

Consider a simple pendulum consisting of a massive bob suspended from a fixed point by a string. Let T denote the time (the period of the pendulum) that it takes the bob to complete one cycle of oscillation (the time it takes for the pendulum to swing back and forth one time). How does the period of the swing of the simple pendulum depend on the quantities that define the pendulum and the quantities that determine the motion

Answers

Answer:

The period of the swing depends on only the length of the string and not on the mass of the bob and the period of the pendulum depends on only the horizontal component of g.

Explanation:

The period of the swing depends on only the length of the string and not on the mass of the bob. Since the length of the string and the mass of the bob define the pendulum.

Also, the properties that define the motion are the component of the weight of the bob in the horizontal direction which determines the to and fro movement of the bob. So, the period of the pendulum depends on only the horizontal component of g.

So, T = 2π√(l/g) where l = length of pendulum and g = acceleration due to gravity.

An air-filled parallel-plate capacitor is charged and then disconnected from the battery. The plates are then pulled apart to twice their original separation. Which of the following statements about this capacitor is true?
A. The capacitance has doubled.
B. The energy stored in the capacitor has doubled.
C. The potential difference across the plates has decreased.
D. The electric field between the plates has increased.

Answers

Answer:

B.

Explanation:

From the given information, since the capacitors are disconnected from the battery, the electric field between the plate does not change due to the fact that there is no difference in charge density.

Hence, the potential difference after separating the plates is:

V' = Ed

V = e (2d')

V' = 2V

For the energy stored in the capacitor;

[tex]U' = \dfrac{1}{2}QV'[/tex]

where;

V' = 2V

[tex]U' = \dfrac{1}{2} Q (2V)}[/tex]

[tex]U' =2( \dfrac{1}{2} Q V)[/tex]

U' = 2U

Thus, in the capacitor, the energy that is being stored is doubled.

Claim:
Elements are pure substances made up of one type of atom,
and are written as their chemical
are pure substances made up of bonded elements, and are written as a

Answers

Explanation:

Elements are distinct substances that cannot be split-up into simpler substances. These substances consist of only one kind of atom.

There are over one hundred elements known to date. Each of these elements is usually symbolized by a capital letter or a capital letter followed by a small letter derived from English or Latin or Greek name of the element concerned.

Elements can be categorized in different ways.

Atoms are the smallest unit of elements that takes part in a chemical reaction.

A subway train starts from rest at a station and accelerates at a rate of 1.60 m/s 2 for 14.0 s. It runs at constant speed for 70.0 s and slows down at a rate of 3.50 m/s 2 until it stops at the next station. Find the total distance covered.

Answers

Answer:

1796.48 m

Explanation:

Given that :

First part of journey :

Initial Velocity, u = 0

Acceleration, a, = 1.60 m/s²

Time, t = 14 s

Distance traveled, S = 0.5at²

S = 0.5 * 1.60 * 14²

S1 = 156.8m

2nd part :

Speed is constant

Time = 70 seconds

At constant speed ;

Distance = speed * time

Speed, V = u + at

V = 0 + 1.6*14

V = 22.4 m/s

Distance, S2 = 22.4 * 70 = 1568 m

3rd part :

Deceleration = - 3.50m/s²

Final velocity, v = 0

Time taken to attain rest

V = u + at

0 = 22.4 - 3.5(t)

3.5t = 22.4

t = 22.4/3.5

t = 6.4 seconds

S3 = ut - 0.5at² (deceleration)

S3 = (22.4*6.4) - 0.5(3.5)*6.4^2

S3 = 71.68m

S1 + S2 + S3

156.8m + 1568m + 71.68m

= 1796.48 m

A system experiences a change in internal energy of 36 kJ in a process that involves a transfer of 14 kJ of heat into the surroundings. Simultaneously, which of the following is true?

a. Q= 14 u=36
b. U=Q-W
c. 14-36=22
d. 22 kJ of work is done on the system.

Answers

Answer:

b. U = Q - W

Explanation:

Given;

change in internal energy, ΔU = 36 kJ

heat transferred to the surroundings Q  = 14 kJ

Apply first law of thermodynamic; the change in internal energy is equal to heat added to the system minus work done by the system.

ΔU = Q - W

Since heat was lost to surroundings, Q = - Q

ΔU = (-Q) - W

36 kJ = -14 kJ - W

36 kJ + 14 kJ = - W

50 kJ = - W

W = - 50 kJ (the negative sign shows that work has been done on the system)

Thus, 50 kJ of work is done on the system.

The only correct answer in the given options is "b" U = Q-W

David is driving a steady 28.0 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2.90 m/s^2 at the instant when David passes.

Required:
a. How far does Tina drive before passing David?
b. What is her speed as she passes him?

Answers

Answer:

Explanation:

Let t represent the time for Tina to catch David.

Hence, considering the equation of linear motion S = ut + 1/2at^2..... 1

For David u = 28.0 m/s where 'a' is set to nought

S = ut

S = 28t.......2

For Tina consider equation 1

Where acceleration = 2.90m/s^2 and u is set at nought

S = 1/2×2.90 m/s×t^2.......3

Equate 2 and 3

28t = 1.45t^2

Divide through by t

28 = 1.45t

t = 28/1.45

t = 19.31seconds

Now put the value of t into equation 3

S = 1/2×2.90 m/s×t^2.......3

= 1.45×20×20

= 580m

Tina must have driven 580meters before passing David

Considering the equation of linear motion : V^2 = U^2+2as

Where u is set at nought

V^2 = 2as

V^2 = 2×2.9×580

V^2 = 3364

V = √3364

V = 58m/s

Her speed will be 58m/s

(a) Tina should drive for 580 m, before passing the David.

(b) The speed of Tina during her passage through the David is 58 m/s.

Given data:

The initial velocity of the David is, u = 28.0 m/s.

The magnitude of acceleration is, [tex]a = 2.90 \;\rm m/s^{2}[/tex].

(a)

We can use the second kinematic equations of motion to obtain the distance covered by Tina, before passing the David. As per the second kinematic equation of motion,

[tex]s= u't + \dfrac{1}{2}at^{2}[/tex]

Here, u' is the initial speed of Tina and t is the time interval. Then,

Let t represent the time for Tina to catch David.

Hence, considering the equation of linear motion as,

S = ut + 1/2at²...............................................................(1)

Also,

S = ut

S = 28t ...........................................................................(2)

For Tina consider equation 1

S = 1/2×2.90t²................................................................(3)

Equate 2 and 3

28t = 1.45t²

 28 = 1.45t

t = 28/1.45

t = 19.31 seconds

Now put the value of t into equation (3)

S = 1/2×2.90 t².

   = 1.45×20×20

   = 580m

Thus, we can conclude that Tina should drive for 580 m, before passing the David.

(b)

Now, using the third kinematic equation of motion to obtain the speed of Tina during her passage through David as,

v² = u²+2as

Solving as,

v² = 28.0² + 2(2.90)(580)

v = √3364

v = 58m/s

Thus, we can conclude that the speed of Tina during her passage through the David is 58 m/s.

Learn more about the Kinematic equation of motion here:

https://brainly.com/question/14355103

I’m confused how to start it and I just need help atleast doing one.

Answers

Answer:

CuCl₂   +    H₂S    →    CuS   +    2HCl  

Explanation:

The unbalanced reaction expression is given as;

        CuCl₂   +    H₂S    →    CuS   +    HCl

The problem here involves balancing of chemical equations.

 We use a mathematical approach to solve this problem. Here assign coefficients a, b, c and d as values that will effect the balance;

          aCuCl₂   +    bH₂S    →    cCuS   +    dHCl

Conserving Cu:  a  = c

                     Cl:   2a  = d

                     H: 2b  = d

                     S: b  = c

let a  = 1; c  = 1, b  = 1 and d  = 2

         CuCl₂   +    H₂S    →    CuS   +    2HCl  

A honeybee leaves the hive, flies in a straight line to a flower 6 km away in 15 min, and then takes 15 minutes to return (also in a straight line). a.) Please find the distance travelled and displacement for the entire trip: distance travelled: 1 12 km displacement: 2 0 km b.) Please find the average speed and average velocity for the entire trip: average speed: 3 0.4 km/min average velocity: 4 0.4 km/min c.) If the bee had not flown in a straight line-- but instead with an unknown motion-- to the flower and back, which could not be determined: the average speed or average velocity

Answers

Answer:

a)   d = 12 km, d = 0,  b)  v = 0.4 km / min, v = 0,  c) v = 0

Explanation:

This problem asks to find the distance and the displacement. We must emphasize that the distance is a scalar and the displacement is a vector quantity

In the exercise, the bold letters indicate vectors

a) Let's find the total distance of the trip

           d = d₁ + d₂

where d₁ is the distance to get to the flowers and d₂ is the distance to return to the hive from the flowers

             d₁ = d₂ = 6 km

             d = 12 km

   

we look for the displacement that is a vector quantity

          d = d₁ - d₂

since the second displacement is in the opposite direction of the first

          d = 0

b) the average speed of the trip, again this magnitude is a scalar

          v = d / t

distance is d = 12 km t total time is t = 15 + 15 = 30 min

          v = 12/30

          v = 0.4 km / min

average velocity (vector) of the entire travel, in that case the displacement is zero

          v = 0

c) If the path is not a straight line but the time is the same, the average speed cannot be calculated since it lacks the distance value

In the same case to calculate the average velocity that is a vector, it will be zero since the net displacement is zero

            v = 0

In the diagram at the right, each grid square is 1.0μmx 1.0 μm. If Mass A = Mass C = 10kg and Mass B = 28 kg, determine the gravitational field at the location marked by the red dot.

Answers

Answer:

B

Explanation:

8-2 is 6

times that times 8 u get B

Question 1 of 10
What might happen to personal information when it is transferred using
digital signals?
A. Some information might be changed when the data are copied.
B. It might be accessed by someone who was not the intended
recipient.
C. The information might change while being transmitted because of
noise.
D. The information might change to analog, making it less reliable.


Answers

Answer:

its b for sure

Explanation:

Answer:

B. It might be accessed by someone who was not the intended

recipient

An inventor develops a stationary cycling device by which an individual, while pedaling, can convert all of the energy expended into heat for warming water. How much mechanical energy is required to increase the temperature of 300 g of water (enough for 1 cup of coffee) from 20°C to 95°C? (1 cal = 4.186 J, the specific heat of water is 4186 J/kg⋅°C)

Answers

Answer:

Emec = 94050 [J]

Explanation:

In order to solve this problem, we must understand that all thermal energy is converted into mechanical energy.

The thermal energy can be calculated by means of the following expression.

[tex]Q=m*C_{p}*(T_{final}-T_{initial})[/tex]

where:

Q = heat [J]

Cp = specific heat of water = 4186 [J/kg*°C]

m = mass = 300 [g] = 0.3 [kg]

T_final = 95 [°C]

T_initial = 20 [°C]

Now we can calculate the heat, replacing the given values:

[tex]Q=0.3*4180*(95-20)\\Q= 94050[J][/tex]

Since all this energy must come from the mechanical energy delivered by the exercise bike, and no energy is lost during the process, the mechanical energy must be equal to the thermal energy.

[tex]Q=E_{mec}\\E_{mec}=94050[J][/tex]

A bat at rest sends out ultrasonic sound waves at 46.2 kHz and receives them returned from an object moving directly away from it at 21.8 m/s, what is the received sound frequency?
f= ? Hz

Answers

Answer:

f" = 40779.61 Hz

Explanation:

From the question, we see that the bat is the source of the sound wave and is initially at rest and the object is in motion as the observer, thus;

from the Doppler effect equation, we can calculate the initial observed frequency as:

f' = f(1 - (v_o/v))

We are given;

f = 46.2 kHz = 46200 Hz

v_o = 21.8 m/s

v is speed of sound = 343 m/s

Thus;

f' = 46200(1 - (21/343))

f' = 43371.4285 Hz

In the second stage, we see that the bat is now a stationary observer while the object is now the moving source;

Thus, from doppler effect again but this time with the source going away from the obsever, the new observed frequency is;

f" = f'/(1 + (v_o/v))

f" = 43371.4285/(1 + (21.8/343))

f" = 40779.61 Hz

The force of gravity acting on an object is directed through this
center of gravity and toward the center of the

Answers

Explanation:

Every object has a center of gravity. ... The force of gravity acting on an object is directed through this center of gravity and toward the center of the earth. The object's weight, W, can be represented by a vector directed down (along the line the object would fall if it were dropped).

It should be towards the center of the earth.

The following information should be considered:

Each and every object contains the center of gravity. The force of activity acted on an object that director via his gravity center & towards the center of the earth.

Learn more: brainly.com/question/17429689

A ray of monochromatic light is incident on a plane mirror at and angle of 30. The angle of reflection for the light is
1)15
2)30
3)60
4)90

Answers

Answer:

30 degrees

Explanation: reflection, same angle

For a ray of monochromatic light is incident on a plane mirror at and angle of 30°. The angle of reflection for the light is 30°.

Reflection occurs when radiation bounces off from a surface. Light is an electromagnetic wave and it can be reflected. According to the laws of reflection, the angle of incidence is equal to the law of reflection.

Hence, for a ray of monochromatic light is incident on a plane mirror at and angle of 30°. The angle of reflection for the light is 30°.

Learn more: https://brainly.com/question/10038290

Which factor/s affect the amount of energy stored in a magnetic field?

The answer is "I, II, and III only"

Answers

Answer:

The answer is I

Explanation:

Answer:

4.) l, ll, and lll only

Explanation:

The rest of the answers:

1.) The field energy will increase.

2.) The energy increases, and the lines of force are denser.

3.) It points toward the field of earths magnetic poles.

5.) ll, lV, l, lll

what is the formula of moment of force​

Answers

Moment of force=fxd

Explain
M=fxd

*PLEASE HELP*
When an object is placed in front
of a convex lens, it creates a virtual
image at -12.8 cm with a
magnification of 2.85. What is the
focal length of the lens?
(Mind your minus signs.)
(Unit = cm)

Answers

Answer: The focal length of the lens = 3.32 cm.

Explanation:

Lens formula : [tex]\dfrac1f=\dfrac1v-\dfrac1u[/tex]    (i)

f= focal length , v=image distance , u =object distance.

magnification: m = [tex]\dfrac{v}{u}[/tex]   (ii )

Given: v= -12.8 cm , m =2.85

Put values in (ii), we get

[tex]2.85=\dfrac{-12.8}{u}\\\\\Rightarrow\ u=\dfrac{-12.8}{2.85}\\\\\Rightarrow\ u=-4.49\ cm[/tex]

substitute values of u , v in (i)

[tex]\dfrac1f=\dfrac1{-12.8}-\dfrac{1}{4.49}\\\\\Rightarrow\dfrac1f=-0.30084214922\\\\\Rightarrow\ f=\dfrac{-1}{-0.30084214922}\approx3.32\ cm[/tex]

Hence, the focal length of the lens = 3.32 cm.

Answer:

6.92

Explanation:

2.85=-(-12.8/x)

do=4.49

1/f= 1/4.49 + 1/-12.8

f=6.92

Austin invested $11,000 in an account paying an interest rate of 5.7% compounded quarterly. Assuming no deposits or withdrawals are made, how much money, to the nearest dollar, would be in the account after 6 years?

Answers

Answer:

15448

Explanation:

A=11000(1.01425)^{24}

A=11000(1.01425)  

24

Austin invested $11,000 in an account paying an interest rate of 5.7% compounded quarterly. Assuming no deposits or withdrawals are made, the money to the nearest dollar, would be in the account after 6 years is 15448.

What is Compound interest?

The compound interest occurs when the interest is reinvested rather than paying it out. It's basically earning interest over interest.

The formula is:

Compound interest, [tex]A = P ( 1 +\frac{r}{n} )^{nt}[/tex]

Where:

A = final Amount

P = initial principal balance

r = interest rate

n = number of times interest applied per time period

t = number of time periods elapsed

Austin invested P=$11000 in an account with an interest rate of r=5.7% = 0.057 (decimal) during t=6 years compounded quarterly. Since there are 4 quarters in a year, n=4.

Thus, Substituting all the values in the given formula,

A = 11000 ( 1 + [tex]\frac{0.057}{4} )^{6*4}[/tex]

 = 11000 × 1.4043662796

 = 15448.0290

The money to the nearest dollar, would be in the account after 6 years is 15448.

Learn more about Compound interest,

https://brainly.com/question/14295570

#SPJ2

10) A soccer player kicks a soccer ball (m = 0.42 kg) accelerating from rest to 32.5m/s in 0.21s. Determine the force that sends soccer ball towards the goal.
G
U
E
S
S
Formula

11) Small rockets are fired to make small adjustments in the speed of a satellite. A certain small rocket can change the velocity of a 72,000kg satellite from 0m/s to 0.63m/s in 1296s. What force is exerted by the rocket on the satellite?

G
U
E
S
S
Formula

please I need help I don't understand it and I had to deliver it yesterday helpp:(

Answers

Answer:

10. 65 N

11. 35 N

Explanation:

10. Determination the force that sends the soccer ball towards the goal.

We'll begin by calculating the acceleration of the ball. This can be obtained as follow:

Initial velocity (u) of the ball = 0 m/s

Final velocity (v) of the ball = 32.5m/s time (t) = 0.21 s

Acceleration (a) of the ball =?

a = (v – u) /t

a = (32.5 – 0) / 0.21

a = 32.5 / 0.21

a = 154.76 m/s²

Finally, we shall determine the force that sends the soccer ball towards the goal. This can be obtained as follow:

Mass (m) of the ball = 0.42 kg

Acceleration (a) of the ball = 154.76 m/s²

Force (F) =?

F = ma

F = 0.42 × 154.76

F = 65 N

Thus, the force that sends soccer ball towards the goal is 65 N

11. Determination of the force exerted by the rocket on the satellite.

We'll begin by calculating the acceleration of the satellite. This can be obtained as follow:

Initial velocity (u) of satellite = 0 m/s

Final velocity (v) of satellite = 0.63 m/s

Time (t) = 1296 s

Acceleration (a) of the satellite =?

a = (v – u) /t

a = (0.63 – 0) / 1296

a = 0.63 / 1296

a = 4.861×10¯⁴ m/s²

Finally, we shall determine the force exerted by the rocket on the satellite. This can be obtained as follow:

Mass (m) of the satellite = 72000 Kg

Acceleration (a) of the satellite = 4.861×10¯⁴ m/s²

Force (F) =?

F = ma

F = 72000 × 4.861×10¯⁴

F = 35 N

Thus, the force exerted by the rocket on the satellite is 35 N

a group of students working in a high school chemistry lab believe they have discovered a new element! how exciting! upon further testing by scientists (with better equipment),it is found that the element contains 74 protons and 110 neutrons.​

Answers

Explanation:

From the experiment:

      Number of protons  = 74

      Number of neutrons  = 110

Number of protons in an element is the atomic number of the element. It is used to locate and position and element on the periodic table.

For a neutral or uncharged atom, the number of protons is the same as the number of electrons.

The element whose number of protons or atomic number if 74 is Tungsten

  Mass number  = 74 + 110  = 184g/mol

5.
What is the apparent colour of a red shirt when viewed in pure green light.?
Red
(b)- Green
Yellow (d) Black) (e) Blue​

Answers

Answer: black

Explanation: When green light is shone on a red object, it absorbs all of the green light and not reflecting anything. Hence, it appears black.

Two identical 0.25 kg balls are involved in a head-on collision. Ball A is initially travelling at 3.5 m/s, and ball B is initally at rest. Determine the velocity of each ball after the collision.

Answers

Answer:

a) mv(final):<0,0,0> minus mv(initial):<25,0,0> = <-25,0,0>

b) mv(final):<25,0,0> minus mv(initial):<0,0,0> = <25,0,0>

c) conservation of momentum makes it <0,0,0>

for a-b-c, momentum_system + momentum_surroundings = 0

Explanation:

Hope this helps

The velocity of each ball after the collision is 1.75 m/s

Law of conservation of momentum states that:

Total momentum before collision = Total momentum after collision

m₁u₁ + m₂u₂ = (m₁ + m₂)v

Where m₁, m₂ is the mass of object, u₁, u₂ is the initial velocity before collision and v is the final velocity after collision

Given that: m₁ = m₂ = 0.25 kg, u₁ = 3.5 m/s, u₂ = 0, hence:

0.25(3.5) + 0.25(0) = (0.25 + 0.25)v

v = 1.75 m/s

The velocity of each ball after the collision is 1.75 m/s

Find out more at: brainly.com/question/20301772

I need help with number 3!!!!!!!!!!!!​

Answers

Answer:

3. The frequency of the wave is 3 Hz.

Explanation:

3. Determination of the frequency of the wave.

Frequency is simply defined as the number of complete circle or oscillation made in 1 seconds. Mathematically, it can be expressed as:

f = n / t

Where:

f => is the frequency.

n => is the number of circle.

t => is the time.

With the above formula, we can obtain the frequency of the wave as follow:

Number of complete circle (n) = 3

Time (t) = 1 s

Frequency (f) =?

f = n / t

f = 3 / 1

f = 3 /s = 3 Hz

Therefore, the frequency of the wave is 3 Hz

Our Sun’s mass is 1.0 and our Earth’s mass is 2.0. The distance is standard as given on the simulation. Describe the path of the Earth.

Answers

Answer:

Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi), and one complete orbit takes 365.256 days (1 sidereal year), during which time Earth has traveled 940 million km (584 million mi).

Explanation:

a 1 mole of an ideal gas is kept at 0°C during expansion from 30l to 10l .How much work is done on the gas during expansion​

Answers

Answer:

20 J

Explanation:

Work done is given force by distance .

W= F * d  where F is force given by the product of pressure and area

W= P* Δv  where Δv  is change in volume.

Given that ;

1 mole of an ideal gas is kept at 0°C, the pressure of the gas is : 1 atm.

Δv  is change in volume , 30 l - 10l = 20 l

W= 1 * 20 = 20 J

Other Questions
Everything Gets Better"You ask me how my day isIt could've been betterYou let me talk for hoursYou seem content toListen to all my worriesAnd carry all my caresYou call me on the phone asking the right questionsYou've seen me at my worst butYou see the best thingsThey only came from youYou taught me everything you knowChorus Somehow when you come aroundEverything gets betterEven through the troubled timesEverything gets betterAll you have to do is smile Everything gets betterComposers: Justin Byrd [APRA], River Saint June [APRA]Publisher: Atmosphere Music Ltd PRSActivity Questions1. What is the overall message of this song?2. How do you know this message is significant?3. Given the beat of the song and the lyrics, how does the song make you feel?4. Why do you think this folk music is relevant for the common people?"The Best for Free"Looking for an answer in the windBeing patient is a bet and winSuddenly it's so plain for me to seeThe best things in life are freeEither it's a rainy or a sunny dayThe only thing that matters is the way you get along with anything that comes aroundIt's up to you to walk up to a higher groundNo matter what, it's in your hands to seeThe best things in life are freeComposer: Raul Bonilla Vendrell [SGAE]Publisher: El Murmullo Sarao SGAE, Universal Sarao SGAEActivity Questions1. What is the overall message of this song?2. How do you know this message is significant?3. Given the beat of the song and the lyrics, how does the song make you feel?4. Why do you think this folk music is relevant for the common people? i need help with this Choose the correct translation for the underline word in the sentence A pueris fabula audietur ________Underline word is audietur Answers Was being heard Is hearing Is being heard Will be heard This is Latin btw 4. Take a beaker (jar or jug) with some water and put some drops of red or blueink in it. Take a tender twig of any flowery plant with leaves and flowers, preferablywhite flowers, and put it in the beaker for 6 to 8 hours. What do you observe? Forfurther examination cut across its stem and look for the presence of colored water.Explain your observations. -9, -6, -1, 6, 15 What is the 8th term of the sequence? There can be four equivalent best resonance structures ofA.NO3B.S032-C.PO43D.NO2E.CIO3 In hopes of encouraging healthier snacks at school, Josie brought in a tray of carrot sticks and apple slices to share. The tray had a total of 60 snacks, of which 70% were carrot sticks. How many carrot sticks did Josie bring? Where will you find permafrost? tall grass prairie savanna chaparral tundra PLEASE HELP MAKING U BRAINLIEST answer the x's Thomas Jefferson john Adams and Benjamin franklin believed hat society was best served by A chameleon is looking for prey. Let positive numbers represent the elevation of prey above the chameleon and negative numbers represent the elevation of prey below the chameleon. The chameleon spots a fly at 4 \text{ m}4 m4, start text, space, m, end text and a grasshopper at -6\text{ m}6 mminus, 6, start text, space, m, end text. What does an elevation of 0 \text{ m}0 m0, start text, space, m, end text represent in this situation? Which two of the following statements are true about architecture in the later Roman Empire? Which statement can be used to disprove the conjecture?Conjecture: The square of any integer is positive. simplify 1+4/x / 1-16 x^2 How many 1/3 are in 2 2/3 Will give brainliestJennifer is trying to determine the blood type of her parents for biology class. She knows that her blood type is B.After asking her mother, she finds out that her mother's blood type is A. However, her father cannot remember his blood type.Which of the following blood types could her father have?I. AII. BIII. ABIV. O A. I or III only B. I, II, or IV only C. I, II, III, or IV D. II or III only A line passes through the points (1, 10) and (0, 2). What is its equation in slope-interceptform? what idea does the author advance in this part of the text?A. Finding an apartment is an important part of becoming an adult.B. Mastering certain tasks will prepare young adults to live on their ownC. Paying bills can help young people feel successful and matureD. Forgetting to do specific chores can lead to serious consequences. A computer software company models its profit with the function P(x) = -x2 + 15x 34 where x is the number of games, in hundreds, that the company sells and P(x) is the profit, in thousands of dollars. How many games must the company sell to get $16,000 in profit? I NEED HELP SORRY FOR CAPS