The moon has a radius of 2,040,816 meters and a mass of 5.61 x 10²⁴ kg.
To find the radius of the moon (a), we can use the formula for centripetal acceleration: a = v² / r, where v is tangential velocity and r is radius.
Since the moon's gravity is the same as Earth's, we can use Earth's gravitational acceleration (9.81 m/s²) for a. We rearrange the formula to solve for r: r = v² / a. Plug in the values (400,000 m/s)² / 9.81 m/s², and we get r = 2,040,816 meters.
To find the mass of the moon (b), we can use the formula for orbital period: T = 2π√(r³ / GM), where T is orbital period, G is the gravitational constant (6.674 x 10⁻¹¹ N(m/kg)²), and M is the mass of the moon.
Rearrange the formula to solve for M: M = r³ / (T² / (4π²)G). Plug in the values 2,040,816³ / (24 * 3600)² / (4π²)(6.674 x 10⁻¹¹), and we get M = 5.61 x 10²⁴ kg.
To know more about centripetal acceleration click on below link:
https://brainly.com/question/14465119#
#SPJ11
most dc motors with three phases only energize two of the three at any given time. which of the three phases is de-energized and why?
When a DC motor with three phases is in operation, it is true that only two of the three phases are energized at any given time. The specific phase that is de-energized depends on the position of the rotor.
The rotor is attracted to the magnetic field produced by the energized phases, so as the rotor rotates, the phases that are energized change in a specific sequence. This sequence is controlled by the motor controller and is designed to produce smooth and efficient operation of the motor.
Therefore, the phase that is de-energized at any given time is determined by the controller's sequence and the position of the rotor.
A direct current (DC) motor is a type of electric machine that converts electrical energy into mechanical energy. DC motors take electrical power through direct current, and convert this energy into mechanical rotation.
To know more about DC motor:https://brainly.com/question/15721280
#SPJ11
As an ice skater begins a spin, his angular speed is 3.34 rad/s. after pulling in his arms, his angular speed increases to 5.44 rad/s.
Find the rasio of the skater's final moment of inertia to his initial moment of inertia.
The ratio of the skater's final moment of inertia to his initial moment of inertia after pulling in his arms is 0.614.
To find the ratio of the skater's final moment of inertia to his initial moment of inertia after pulling in his arms, we can use the conservation of angular momentum principle. The formula is:
Initial angular momentum (L1) = Final angular momentum (L2)
where L1 = I1 × ω1 and L2 = I2 × ω2 (I is the moment of inertia and ω is the angular speed).
Given that the initial angular speed (ω1) is 3.34 rad/s and the final angular speed (ω2) is 5.44 rad/s, we can set up the equation:
I1 × ω1 = I2 × ω2
To find the ratio I2/I1, divide both sides by I1 × ω2:
I2/I1 = ω1/ω2 = 3.34 rad/s / 5.44 rad/s
I2/I1 ≈ 0.614
So the ratio of the skater's final moment of inertia to his initial moment of inertia is approximately 0.614.
Learn more about moment of inertia: https://brainly.com/question/15246709
#SPJ11
The meterstick is supported so that it remains horizontal, and then it is released from rest. One second after it is released, what is the change in the angular momentum of the meterstick? A. 0 B. 500 kg.m/s C. 1000 kg.mºs D. The change in angular momentum of the meterstick cannot be determined from this information.
The change in the angular momentum of the meterstick cannot be determined from this information.
An object's angular momentum is comparable to its linear momentum, which is defined as the mass in motion, except that the item is rotating as opposed to traveling in a straight line. We can think of angular momentum as the mass in rotation.
Change in angular momentum
ΔL = L(final) - L(initial)
ΔL = Iω,
where I = moment of inertia and
ω = angular velocity.
No information can be obtained from the question about angular velocity, hence we can't calculate the change in angular momentum.
Therefore, the change in the angular momentum of the meterstick cannot be determined from this information.
To know more about angular momentum, click here :
https://brainly.com/question/29563080
#SPJ12
A pendulum has a length of 4.74 m. Find its period. Theacceleration of gravity
is 9.8 m/s2. Answer in units of s. How long wouldthe pendulum have to be to
double the period? Answer in units of m.
The pendulum would need to be approximately 18.964 meters long to double its period.
To find the period of a pendulum, we can use the formula:
T = 2π√(L/g)
where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
Given that L = 4.74 m and g = 9.8 m/s², let's find the period T:
T = 2π√(4.74/9.8)
T ≈ 2π√(0.4837)
T ≈ 2π(0.6955)
T ≈ 4.372 s
So the period of the pendulum is approximately 4.372 seconds.
Now, to double the period, we have to find the new length L'. We can use the same formula but with the new period T':
T' = 2T
T' ≈ 2(4.372)
T' ≈ 8.744 s
Now, let's solve for L':
8.744 = 2π√(L'/9.8)
(8.744/2π)² = L'/9.8
1.932² = L'/9.8
L' ≈ 1.932² * 9.8
L' ≈ 18.964 m
To double the period, the pendulum would have to be approximately 18.964 meters long.
For more about pendulum:
https://brainly.com/question/29702798
#SPJ11
at 11 °c, the kinetic energy per molecule in a room is kave.
At 11 °C, the kinetic energy per molecule in a room is kave = 6.21 x 10^-21 J.
Why the kinetic energy is per molecule in a gas?The kinetic energy per molecule in a gas is given by the formula:
KE = (3/2) kT
where KE is the kinetic energy per molecule, k is the Boltzmann constant (1.38 x 10^-23 J/K), and T is the temperature in Kelvin.
To convert a temperature from Celsius to Kelvin, we need to add 273.15 to the Celsius temperature.
So if the temperature is 11 °C, then the temperature in Kelvin is:
T = 11 °C + 273.15 = 284.15 K
Substituting this value into the formula for kinetic energy per molecule, we get:
KE = (3/2) kT = (3/2) (1.38 x 10^-23 J/K) (284.15 K)
KE = 6.21 x 10^-21 J
Therefore, at 11 °C, the kinetic energy per molecule in a room is kave = 6.21 x 10^-21 J.
Learn more about kinetic energy
brainly.com/question/26472013
#SPJ11
An electric motor on a full electric vehicle operates on a 350 V battery pack and has 60kWh energy. The vehicle consumes 200Wh/km.
A) how many kilometers can the car drive on a fully charged battery?
B) If the battery current drain during driving is at 100 A, find how many hours in the car and drive at this discharge current. assume the voltage of the battery during driving remains at 350 V.
C) how much does it cost to charge the battery pack if electricity cost is 0.15 cents per kWh
A) To calculate the number of kilometers the car can drive on a fully charged battery, we need to divide the total energy of the battery (60 kWh) by the energy consumed per kilometer (200 Wh/km).
60,000 Wh / 200 Wh/km = 300 km
Therefore, the car can drive 300 kilometers on a fully charged battery.
B) If the battery current drain during driving is at 100 A, we can calculate the number of hours the car can drive at this discharge current by dividing the total energy of the battery (60 kWh) by the power consumed (voltage x current).
P = V x I
P = 350 V x 100 A = 35,000 W
60,000 Wh / 35,000 W = 1.7 hours
Therefore, the car can drive for 1.7 hours at a discharge current of 100 A.
C) If the electricity cost is 0.15 cents per kWh, we can calculate the cost to charge the battery pack by multiplying the energy of the battery (60 kWh) by the electricity cost (0.15 cents/kWh) and converting it to dollars.
60 kWh x 0.15 cents/kWh = 9 dollars
Therefore, it costs 9 dollars to charge the battery pack at an electricity cost of 0.15 cents per kWh.
Hi there! I'd be happy to help you with your electric vehicle question.
A) To determine how many kilometers the car can drive on a fully charged battery, divide the battery energy by the vehicle's energy consumption:
60 kWh / (200 Wh/km) = (60,000 Wh) / (200 Wh/km) = 300 km
The car can drive 300 kilometers on a fully charged battery.
B) To find how many hours the car can drive at a discharge current of 100 A, first calculate the power being used:
Power = Voltage x Current = 350 V x 100 A = 35,000 W (or 35 kW)
Next, divide the battery energy by the power being used:
60 kWh / 35 kW = 1.714 hours
The car can drive for 1.714 hours at this discharge current.
C) To calculate the cost to charge the battery pack, multiply the battery energy by the electricity cost:
60 kWh x $0.15/kWh = $9
It costs $9 to charge the battery pack.
I hope this helps! If you have any further questions, feel free to ask.
Learn more about battery energy by the electricity here;
https://brainly.com/question/31238327
#SPJ11
50 ml of water at 80°c is added to 50 ml of water at 20°c. what would be the final temperature?
The final temperature of the mixture would be 50°C when 50 ml of water at 80°C is added to 50 ml of water at 20°C.
To determine the final temperature, we need to use the principle of conservation of energy, which states that the total energy in a closed system remains constant. In this case, we can assume that the two samples of water together form a closed system.
First, we need to calculate the amount of energy in each sample of water using the specific heat capacity formula:
q = m x c x ΔT
where q is the energy in Joules, m is the mass in grams, c is the specific heat capacity in J/g°C, and ΔT is the change in temperature in °C.
For the first sample of water at 80°C:
[tex]q_1 = 50 * 4.18 *(80 - T_1)[/tex]
where T1 is the final temperature we are trying to find.
For the second sample of water at 20°C:
[tex]q_2 = 50 *4.18 * (T_1 - 20)[/tex]
Now, since the total energy in the closed system remains constant, we can set q1 equal to [tex]q_2[/tex] and solve for [tex]T_1[/tex]:
[tex]50 * 4.18 * (80 - T_1) = 50 * 4.18 * (T_1 - 20)[/tex]
Simplifying the equation, we get:
[tex](80 - T_1) = (T_1 - 20)[/tex]
[tex]100 = 2T_1[/tex]
[tex]T_1[/tex] = 50°C
Therefore, the final temperature of the mixture would be 50°C.
Learn more about energy :
https://brainly.com/question/1371184
#SPJ11
5. i) Sketch the real and imaginary parts of the n = 2,1 = 1 orbitals for m = -1,0, and 1. ii) Show how we can reformulate these into the more familiar 2p orbitals. iii) Which operators will these more familiar 2p orbitals still be eigenvectors of?
i) These equations yield the real and imaginary parts components of the n = 2, l = 1, m = -1, 0, and 1 orbitals: Zero imaginary parts.
Real part is proportional to cos(phi) for m = -1.
Part in the imagination: proportional to sin(phi)
m = 0:
Real part: z/r * sin(theta) proportional to
Zero imaginary parts
Real component is proportional to -sin(phi) when m = 1.
Part in the imagination: proportional to cos(phi)
Theta is the polar angle in this case, while phi is the azimuthal angle.
ii) The m = -1, 0, and 1 orbitals may be combined to create the more well-known 2p orbitals.
The m = -1 and m = 1 orbitals are linearly combined to form the 2p_x orbital, whereas the real portions of the m = 0 orbitals for positive and negative values of phi are linearly combined to form the 2p_z orbital. By extracting the hypothetical portion of the 2p_x orbital, the 2p_y orbital is obtained.
iii) The more well-known 2p orbitals will still be eigenvectors of the L_x, L_y, and L_z angular momentum operators.
Learn more about imaginary parts visit: brainly.com/question/5564133
#SPJ4
At a distance of 8 km from a radio transmitter the amplitude of electric field strength is measured to be 0.35 V/m. Assuming the transmitter radiates isotropically (a word we covered in class), what is the total power emitted by the transmitter, in Watts? (The area of a sphere is 4phir^2.)
The total power emitted by the transmitter, in Watts, is approximately 867,167 W. To find the total power emitted by the transmitter, we need to use the given information: distance from the transmitter (8 km), electric field strength (0.35 V/m), and the assumption that the transmitter radiates isotropically.
We also need the formula for the area of a sphere (4πr²).
Step 1: Convert the distance from kilometers to meters:
8 km = 8,000 meters
Step 2: Calculate the surface area of the sphere:
Area = 4πr² = 4π(8,000 m)² ≈ 804,247,719 m²
Step 3: Calculate the power density at the given distance (Power density = E²/120π):
Power density = (0.35 V/m)² / (120π) ≈ 1.08 × 10⁻³ W/m²
Step 4: Calculate the total power emitted by the transmitter (Power = Power density × Area):
Total power = 1.08 × 10⁻³ W/m² × 804,247,719 m² ≈ 867,167 W.
To know more about transmitter refer here:
https://brainly.com/question/2084370#
#SPJ11
Suppose you now grab the edge of thewheel with your hand, stopping it from spinning.
What happens to themerry-go-round?
It remainsat rest.
It begins torotate counterclockwise (as observed from above).
It begins torotate clockwise (as observed from above).
The merry-go-round stops spinning. When you grab the edge of the merry-go-round wheel with your hand, the friction force between your hand and the wheel causes the wheel to slow down and eventually come to a stop.
The direction of rotation before you stopped the wheel will determine the direction it rotates after you stop it.
If the wheel was rotating clockwise before you stopped it, it will rotate counterclockwise after you stop it, and vice versa.
This is due to the conservation of angular momentum, which states that the total amount of angular momentum in a closed system remains constant unless acted upon by an external torque.
For more such questions on friction force, click on:
https://brainly.com/question/24338873
#SPJ11
9. Block A is pulled at a constant velocity up an incline as shown. Toward which point will the force of
friction be directed?
C.
d.
t
1 TL.
C.
The block would try to push down due to it's weight.
A lens is made of glass having an index of refraction of 1.5. One side of the lens is flat, and the other is convex with a radius of curvature of 20cm. (a) Find the focal length of the lens. (b) If and object is placed 40 cm in front of the lens, where is the image?
The focal length of the lens is 40 cm, and the image is located at infinity.
The focal length of a lens can be determined using the lensmaker's equation;
1/f=(n - 1) × (1/R₁ - 1/R₂)
where f is the focal length of the lens, n is the refractive index of the lens material (in this case, n = 1.5), R₁ is the radius of curvature of one side of the lens (in this case, R₁ = infinity for the flat side), and R₂ is the radius of curvature of the other side of the lens (in this case, R₂ = 20 cm for the convex side).
Plugging in the values, we get;
1/f = (1.5 - 1) × (1/infinity - 1/20)
1/f = 0.5 × (-1/20)
1/f = -0.025
f = -40 cm
Note that the negative sign indicates that the lens is a converging lens (i.e., it brings parallel light rays to a focus).
Therefore, the focal length of the lens will be 40 cm.
To find the location of the image formed by the lens, we can use the thin lens equation;
1/o + 1/i = 1/f
where o is the object distance (the distance of the object from the lens), i is the image distance (the distance of the image from the lens), and f is the focal length of the lens.
Plugging in the values, we get;
1/40 + 1/i = 1/40
1/i = 0
This indicates that the image is formed at infinity (i.e., the light rays are parallel after passing through the lens).
Therefore, the image is located at infinity.
To know more about focal length here
https://brainly.com/question/16188698
#SPJ4
Use a surface integral to compute the flux of the vector field
F = ˆr/|r|2
leaving a unit sphere centered at the origin.
A surface integral is a powerful tool for computing the flux of a vector field. In this case, the vector field is F = ˆr/|r|2 and the surface is a unit sphere centered at the origin.
To compute the flux of this vector field, we need to take the surface integral of the dot product of F and the normal vector of the surface. This can be expressed mathematically as the integral over the surface of F · n da.
Since the normal vector of a unit sphere is always the position vector, then the surface integral can be expressed as the integral over the surface of ˆr/|r|2 · ˆr da. This integral can be solved to yield the result that the flux of F leaving the unit sphere is 4π.
Know more about flux here
https://brainly.com/question/30858765#
#SPJ11
what is the linear speed of an outer horse on the carousel, which is 2.55 m from the axis of rotation]
The linear speed of an outer horse on the carousel can be calculated using the formula v = rω, where v is the linear speed, r is the distance from the axis of rotation, and ω is the angular velocity. Assuming that the carousel is rotating at a constant speed, we can use the formula v = rω to find the linear speed of the outer horse.
Given that the distance from the axis of rotation to the outer horse is 2.55 m, we can plug this value into the formula to get:
v = rω
v = (2.55 m)(ω)
However, we still need to find the value of ω. To do this, we need to know the period of rotation, which is the time it takes for the carousel to complete one full rotation. Let's assume that the period is 10 seconds.
The formula for angular velocity is ω = 2π/T, where T is the period of rotation. Plugging in the values we know, we get:
ω = 2π/T
ω = 2π/10 s
ω = 0.628 rad/s
Now we can use the formula v = rω to find the linear linear
v = (2.55 m)(0.628 rad/s)
v = 1.6 m/s
Therefore, the linear speed of the outer horse on the carousel is 1.6 m/s.
Learn more about linear here:
https://brainly.com/question/15830007
#SPJ11
despite contacting the glacier sample boundary at an angle larger than the critical angle, why is the first incident laser beam still refracted?
Despite contacting the glacier sample boundary at an angle larger than the critical angle, the first incident laser beam is still refracted as the Total internal refraction condition is not met.
Critical angle: it is the angle of incidence where the angle of refraction becomes 90 degrees.
The Total internal reflection (TIR) is a phenomenon that takes place when the two conditions are fulfilled.
First: a light ray is traveling in the more dense medium and approaching the less-dense medium.
Second: the angle of incidence for the light ray is greater than the critical angle.
Here, the second condition is met, but the first condition is not met.
Hence, the first incident laser beam is still refracted as the Total internal refraction condition is not met.
To learn more about Total internal reflection :
https://brainly.com/question/13088998
#SPJ12
This plot shows three blackbody spectra, for T = 5000, 400
The spectrum for T=4000 K
None of these spectra will produce blue light.
The spectrum for T=3000 K
The spectrum for T=5000 K
Among the blackbody spectra shown in Question 5, which one produces more light in the infrared part of the spectrum?
Group of answer choices
The spectrum for T=5000 K
None of these spectra will produce infrared light.
The spectrum for T=4000 K
The spectrum for T=3000 K
Among the blackbody spectra shown in Question 5, which one will produce more light in the X-ray part of the spectrum (at a wavelength of 0.001 microns)?
Group of answer choices
The spectrum for T=3000 K
None of these spectra will produce X-ray light.
The spectrum for T=4000 K
The spectrum for T=5000 K0, and 3000 K. Which of these spectra produces more light in the blue part of the visible spectrum?
None of these spectra will produce significant X-ray light, as the temperatures are not high enough to emit light at such short wavelengths (0.001 microns).
The spectrum for T=5000 K produces more light in the blue part of the visible spectrum.
The spectrum for T=5000 K produces more light in the blue part of the visible spectrum.
Among the blackbody spectra shown in Question 5, the spectrum for T=3000 K produces more light in the infrared part of the spectrum.
None of these spectra will produce significant X-ray light, as the temperatures are not high enough to emit light at such short wavelengths (0.001 microns).
To know more about visible spectrum. click here:
brainly.com/question/18704022
#SPJ11
The scientist first credited for discovering the concept of inertia was Select one: a. Newton. b. Aristotle. c. Galileo. d. Copernicus
The scientist first credited for discovering the concept of inertia was Galileo. Option c is correct.
Galileo was an Italian physicist, mathematician, and astronomer who lived in the late 16th and early 17th century. He was one of the first scientists to study motion and is credited with discovering the concept of inertia, which is the tendency of a body at rest to remain at rest or a body in motion to remain in motion in a straight line at a constant velocity unless acted upon by a force.
Galileo discovered this concept through his experiments with moving objects, including rolling balls and falling objects, and his observations of the movements of the planets. His work laid the foundation for Isaac Newton's laws of motion, which are still used today to describe the behavior of objects in motion. Hence Option c is correct.
To learn more about concept of inertia, here
https://brainly.com/question/31322892
#SPJ4
Suppose you have a 9.00-V battery, a 2.6-μF capacitor, and a 7.85-μF
capacitor.
(A) Find the total charge stored in the system if the capacitors are connected to the battery in series in C
.
(B) Find the energy stored in the system if the capacitors are connected to the battery in series in J
.
(C) Find the charge if the capacitors are connected to the battery in parallel in C
.
(D) Find the energy stored if the capacitors are connected to the battery in parallel in J
.
you have a 9.00-V battery, a 2.6-μF capacitor, and a 7.85-μF capacitor. In series, A) Total charge stored = 1.76 * 10⁻⁵ C; B) Energy stored= 7.9 * 10⁻⁵ J; In parallel, C) Total charge stored= 94.05 * 10⁻⁶ C; D) Energy stored= 4.23 * 10⁻⁴ J
Given V= 9V
C1 = 2.6 μF
C2 = 7.85 μF
If capacitors are connected in series:
then, Ceq = (C1 * C2)/ C1+ C2 = (2.6 * 7.85)/ (2.6 + 7.85) = 1.953 μF
A) Q = CV = 1.953 μF * 9V = 17.578 μC = 1.76 * 10⁻⁵ C
B) Energy stored = U = 1/2 CV²
or, U= 1/2 (1.953 * 10⁻⁶ F) * (9V)² = 7.9 * 10⁻⁵ J
If capacitors are conncted in parallel,
Ceq = C1+ C2 = (2.6 + 7.85) μF = 10.45 μF
C) Here, Q= CV = 10.45 μF * 9V = 94.05 * 10⁻⁶ C
D) Energy stored = U = 1/2 CV²
or, U= 1/2 (10.45* 10⁻⁶ ) (9)² = 4.23 * 10⁻⁴ J
To know more about capacitors here:
https://brainly.com/question/17176550#
#SPJ11
of the three stars you’ve observed (hip 87937, hip 108870, and tau cet), which one is more luminous? tau cet hip 87937 hip 108870 they have the same luminosity.
a.tau cet
b.hip 87937
c.hip 108870
d.they have the same luminosity
The requried, regardless of their individual properties or distances from Earth, all three stars have the same luminosity. Option D. is correct.
Luminosity refers to the total amount of energy emitted by a star per unit of time. It is a measure of the intrinsic brightness of a star, independent of its distance from us.
In the given scenario, we have three stars: tau cet, hip 87937, and hip 108870. The information states that these three stars have the same luminosity. This means that all three stars emit the same amount of energy per unit of time, making them equally bright.
Therefore, regardless of their individual properties or distances from Earth, all three stars have the same luminosity. This suggests that, in terms of brightness, there is no distinction among tau cet, hip 87937, and hip 108870.
Learn more about luminosity here:
https://brainly.com/question/13945214
#SPJ12
A standing electromagnetic wave in a certain material has a frequency 2.20 × 10^10 Hz. The nodal planes of B⃗ are 4.35 mm apart. Find the wavelength of the wave in this material. Find the distance between adjacent nodal planes of the E⃗ field. Find the speed of propagation of the wave.
The wavelength (λ) of the wave can be found using the formula λ = c/f, where c is the speed of light in vacuum (3 × 10^8 m/s) and f is the frequency. Substituting the given values, we get:
λ = (3 × 10^8 m/s)/(2.20 × 10^10 Hz) = 0.0136 m = 13.6 mm
The distance between adjacent nodal planes of the E⃗ field (which is perpendicular to the B⃗ field) is half the wavelength, so it is:
(1/2)λ = (1/2)(0.0136 m) = 0.0068 m = 6.8 mm
The speed of propagation of the wave can be found using the formula v = fλ, where v is the speed and f and λ are the frequency and wavelength, respectively. Substituting the given values, we get:
v = (2.20 × 10^10 Hz)(0.0136 m) = 2.99 × 10^8 m/s
Note that the speed of propagation in a material can be different from the speed of light in vacuum, which is why we use the given frequency and nodal plane separation to calculate the wavelength and speed in this specific material.
Given the frequency of the standing electromagnetic wave is 2.20 × 10^10 Hz, and the distance between the nodal planes of the magnetic field (B⃗) is 4.35 mm.
1. To find the wavelength of the wave in this material, we can use the relationship between the distance between nodal planes and wavelength: the distance between nodal planes is half the wavelength. Therefore:
Wavelength (λ) = 2 * distance between nodal planes
λ = 2 * 4.35 mm
λ = 8.70 mm
2. The distance between adjacent nodal planes of the electric field (E⃗) is the same as the distance between the nodal planes of the magnetic field (B⃗), which is 4.35 mm.
3. To find the speed of propagation of the wave, we can use the formula:
Speed (v) = Frequency (f) * Wavelength (λ)
v = 2.20 × 10^10 Hz * 8.70 × 10^-3 m (converting mm to meters)
v = 1.914 × 10^8 m/s
In summary, the wavelength of the wave in this material is 8.70 mm, the distance between adjacent nodal planes of the E⃗ field is 4.35 mm, and the speed of propagation of the wave is 1.914 × 10^8 m/s.
Learn more about wavelength here;
https://brainly.com/question/13533093
#SPJ11
Initially, a single capacitance C1 is wired to a battery. Then capacitance C2 is added in parallel. Are (a) the potential difference across C1 and (b) the charge q1 on C1 now more than, less than, or the same as previously? (c) Is the equivalent capacitance C12 of C1 and C2 more than, less than, or equal to C1? (d) Is the charge stored on C1 and C2 together more than, less than, or equal to the charge stored previously on C1? (e)Repeat Question 5 for C2 added in series rather than in parallel. i only care for e part and please with the full answer so i can understand why
Initially, a single capacitance C1 is wired to a battery. Then capacitance C2 is added in series.
(e) When capacitance C2 is added in series to capacitance C1:the equivalent capacitance C12 of C1 and C2 is less than C1, and the equivalent capacitance C12 = (C1C2)/(C1 + C2)
As, the capacitances are in series, and the total potential difference V across them would be equal to the sum of the potential differences across them.
So, the potential difference across C1 will be less than the previous potential difference across C1 when only capacitance C1 was connected to the battery.
The formula for potential difference across capacitance C1 would be: V = Q1/C1, where Q1 is the charge stored in capacitance C1.
As the potential difference V decreases and C1 remains the same, the charge Q1 on C1 would also decrease. Thus, (i) the potential difference across C1 and (ii) the charge q1 on C1 is now less than previously.
Know more about capacitance:
https://brainly.com/question/31871398
#SPJ12
A stockroom worker pushes a box with a mass of 11.2 kg on a horizontal surface with a constant speed of 3.10 m/s. The coefficient of kinetic friction between the box and the surface is 0.18. What horizontal force must the worker apply to maintain the motion?
The worker must apply a horizontal force of approximately 19.78 N to maintain the motion of the box of mass 11.2 kg.
To find the horizontal force the worker must apply to maintain the motion of a box with a mass of 11.2 kg at a constant speed of 3.10 m/s, we need to consider the frictional force acting on the box.
Here are the steps to calculate the required force:
1. Calculate the gravitational force acting on the box: F_gravity = mass * g, where g = 9.81 m/s² (gravitational acceleration).
F_gravity = 11.2 kg * 9.81 m/s² = 109.872 N
2. Calculate the frictional force: F_friction = coefficient of kinetic friction * F_gravity
F_friction = 0.18 * 109.872 N = 19.77696 N
3. Since the box is moving at a constant speed, the applied force must be equal to the frictional force to maintain the motion.
F_applied = F_friction = 19.77696 N
So, the worker must apply a horizontal force of approximately 19.78 N to maintain the motion of the box.
For more information on mass, speed and force refer to https://brainly.in/question/23858054
#SPJ11
The substitution of machinery that has sensing and control devices for human labour is best described by the term: Select one:
a. computer-integrated manufacturing
b. loss of jobs
c. flexible manufacturing system
d. automation
e. computer-aided manufacturing
The substitution of machinery that has sensing and control devices for human labor is best described by the term: d. automation
The best term to describe the substitution of machinery that has sensing and control devices for human labor is "automation". Automation involves the use of machinery with advanced control devices and sensors to perform tasks that were previously done by humans. This can lead to increased efficiency and productivity, but can also result in the loss of jobs for human workers. Automation can be used to replace physical labor, reduce workloads, minimize mistakes, and increase efficiency. Automation can also be used to increase safety by having machines perform tasks that are too dangerous for humans, such as handling hazardous materials.
To learn more about automation click here https://brainly.com/question/28222698
#SPJ11
What are the comfort-related properties of indoor air that climate sensors measure?(Select all the correct answer) I. CirculationII. FiltrationIII. HumidityIV. TemperatureV. Ventilation
The comfort-related properties of indoor air that climate sensors measure are III. Humidity, IV. Temperature, and V. Ventilation.
What's climate sensorsClimate sensors in indoor spaces measure various comfort-related properties to ensure a healthy and comfortable environment. These properties include:
Humidity: Indoor air humidity levels are measured by climate sensors to maintain a balanced environment, as excessive moisture or dryness can cause discomfort and impact health. Temperature: Temperature is a key factor in indoor comfort, so climate sensors monitor and regulate it to maintain a comfortable range for occupants. Ventilation: Proper ventilation ensures a continuous supply of fresh air while removing stale air. Climate sensors track the effectiveness of the ventilation system to provide a comfortable and healthy indoor environment..Learn more about indoor air at
https://brainly.com/question/17137739
#SPJ11
what is the wavelength of light in nm falling on double slits separated by 2.15 µm if the third-order maximum is at an angle of 61.0°? 627 correct: your answer is correct. nm
The correct answer is the wavelength of light falling on the double slits is approximately 1160 nm.
To find the wavelength of light in nm, we can use the formula for double-slit interference:
d * sin(θ) = m * λ
where:
- d is the distance between the slits (2.15 µm or 2.15 * 10^(-6) m)
- θ is the angle of the maximum (61.0°)
- m is the order of the maximum (3 for third-order)
- λ is the wavelength of light
Rearranging the formula to find λ:
λ = (d * sin(θ)) / m
Converting the angle to radians:
θ = 61.0° * (π / 180) ≈ 1.064 radians
Now, plug in the values:
λ = (2.15 * 10^(-6) m * sin(1.064)) / 3
Calculating the wavelength:
λ ≈ 1.16 * 10^(-6) m
Converting the wavelength to nm:
λ ≈ 1160 nm
To know more about wavelength here
https://brainly.com/question/31143857
#SPJ11
what is the load, in amps, for a 3ø, 208v feeder supplying a load calculated at 96.75kva?
The load, in amps, for a 3-phase, 208V feeder supplying a load calculated at 96.75kVA is approximately 268.64 Amps.
To calculate the load, in amps, for a 3-phase, 208V feeder supplying a load calculated at 96.75kVA, you can use the formula,
Load (Amps) = (kVA x 1000) / (Voltage x √3)
Where,
kVA = 96.75
Voltage = 208V
√3 = 1.732 (the square root of 3)
Multiply kVA by 1000 to convert it to VA.
96.75 x 1000 = 96750VA
Multiply voltage by the square root of 3.
208 x 1.732 = 360.256
Divide the VA value by the result from step 2.
96750 / 360.256 = 268.64 Amps
A 3-phase, 208V feeder's load in amps for feeding a 96.75kVA load is roughly equal to 268.64 Amps.
Learn more about "load": https://brainly.com/question/25543272
#SPJ11
what is the resistance of a 20.4 −m-long piece of 12-gauge copper wire having a 2.047 −mm diameter? the resistivity of copper is 1.61 ×10−8ωm.
Answer: 3.24 * 10^-4 ohms
Explanation:
For this question, we will use the equation R = p L/A. R represents resisatnce, p is resistivity, L is length, and A is area.
p = 1.61 * 10^-8 ohm-meters
L = 20.4 m
A = (area of a circle)
- Convert diameter into radius (and the correct units): 2.047/2 * 10 ^-3.
Now plug them into the equation.
The reactance of a capacitor is 65 ohms at a frequency of 57 Hz. What is its capacitance?
The capacitance of the capacitor is approximately 4.27 μF (microfarads).
Hi! To find the capacitance of a capacitor with a reactance of 65 ohms at a frequency of 57 Hz, you can use the formula for capacitive reactance:
Xc = 1 / (2 * π * f * C)
Where Xc is the capacitive reactance (65 ohms), f is the frequency (57 Hz), and C is the capacitance we want to find. Rearranging the formula to solve for capacitance:
C = 1 / (2 * π * f * Xc)
Now, plug in the given values:
C = 1 / (2 * π * 57 Hz * 65 ohms)
Calculate the result:
C ≈ 4.27 × 10^-6 F
So, the capacitance of the capacitor is approximately 4.27 μF (microfarads).
To know more about capacitance refer here:
https://brainly.com/question/28445252
#SPJ11
A wheel rotates at a constant rate of 2.0 × 10^3 rev/min . (a) What is its angular velocity in radians per second? (b) Through what angle does it turn in 10 s? Express the solution in radians and degrees.
In 10 seconds, the wheel turns through an angle of approximately 2094.4 radians or 120000 degrees.
(a) To find the angular velocity in radians per second, first convert the given rate from revolutions per minute to radians per second. Recall that there are 2π radians in one revolution and 60 seconds in one minute.
Angular velocity (ω) = (2.0 × 10^3 rev/min) × (2π radians/rev) × (1 min/60 s)
Now, perform the calculations:
ω = (2.0 × 10^3) × (2π) × (1/60)
ω ≈ 209.44 radians/s
So, the angular velocity of the wheel is approximately 209.44 radians per second.
(b) To find the angle through which the wheel turns in 10 seconds, multiply the angular velocity by the time interval:
Angle (θ) = Angular velocity (ω) × Time (t)
θ = 209.44 radians/s × 10 s
θ ≈ 2094.4 radians
Now, to express this angle in degrees, recall that there are 180 degrees in π radians:
θ (degrees) = 2094.4 radians × (180°/π)
θ (degrees) ≈ 120000°
Therefore, the wheel rotates across an angle of around 2094.4 radians, or 120000 degrees, in 10 seconds.
Learn more about "angular velocity": https://brainly.com/question/20432894
#SPJ11
A galvanometer needle deflects full scale for a 53.0-μA current. What current will give full-scale deflection if the magnetic field weakens to 0.840 of its original value?
When the magnetic field weakens to 0.840 of its original value, a current of approximately 44.5 μA is needed to give full-scale deflection in the galvanometer.
To answer this question, we need to use the formula for the current (I) that produces a deflection in a galvanometer, which is given by:
I = kθ/B
Where k is sensitivity of the galvanometer, θ is deflection angle, and B is magnetic field strength.
In this case, we are given that the galvanometer needle deflects full scale for a 53.0-μA current, which means that:
[tex]I1 = 53.0 μA[/tex]
We are also told that the magnetic field weakens to 0.840 of its original value, which means that:
B2 = 0.840B1
To find the current that will give full-scale deflection with this weaker magnetic field, we can rearrange the formula as follows:
I2 = (B2/B1) (I1)
Substitute:
[tex]I2 = (0.840B1/B1) (53.0 μA)\\I2 = 44.5 μA[/tex]
Therefore, the current that will give full-scale deflection with the weaker magnetic field is 44.5 μA.
Learn more about galvanometer here:
https://brainly.com/question/17247518
#SPJ11
When the magnetic field weakens to 0.840 of its original value, a current of approximately 44.5 μA is needed to give full-scale deflection in the galvanometer.
To answer this question, we need to use the formula for the current (I) that produces a deflection in a galvanometer, which is given by:
I = kθ/B
Where k is sensitivity of the galvanometer, θ is deflection angle, and B is magnetic field strength.
In this case, we are given that the galvanometer needle deflects full scale for a 53.0-μA current, which means that:
[tex]I1 = 53.0 μA[/tex]
We are also told that the magnetic field weakens to 0.840 of its original value, which means that:
B2 = 0.840B1
To find the current that will give full-scale deflection with this weaker magnetic field, we can rearrange the formula as follows:
I2 = (B2/B1) (I1)
Substitute:
[tex]I2 = (0.840B1/B1) (53.0 μA)\\I2 = 44.5 μA[/tex]
Therefore, the current that will give full-scale deflection with the weaker magnetic field is 44.5 μA.
Learn more about galvanometer here:
https://brainly.com/question/17247518
#SPJ11