Hey I'm Chloe Can you Help Me I will give Brainlest, Thank you :)
Pythagoras lived over 2500 years ago. What is his theorem and why do we still use it today?
Answer:
The Pythagorean Theorem is helpful for two-dimensional navigation. You can use it along with two lengths to calculate the shortest path. The lengths north and west will be the triangle's two wings, and the diagonal will be the shortest line separating them. The same principles can be used for air navigation. He is best known in the modern day for the Pythagorean Theorem, a mathematical formula which states that the square of the hypotenuse of a right triangle is equal to the sum of the squares on the other two sides.
- Hope this helps! :)
HELP PLEASE!!! WILL CROWN BRAINLIEST....
The temperature on Sunday was 7 C. The temperature dropped 8 C on Monday
and dropped twice as much on Tuesday. What was the temperature on Tuesday?
Answer: - 17 C
Step-by-step explanation: 7 - 8 is negative 1 and twice as much of 8 is 16. -1 minus 16 is negative 17 (-17).
Choose the equation that best describes the situation below.
The Houston Rockets scored 66 points in the second half. There are 24 minutes in a half. What was their average number of points per
minute?
p=points per minute
That would just be
66/24, as there is 24 minutes in a half
66/24=2.75 points
p = 2.75 points per min
Given 2 non-empty Languages A,B⊆ {a,b}∗, give an example of A* = B* and A != B
A is not equal to B because they have different initial strings. A contains strings composed of 'a', while B contains strings composed of 'b'.
Can you provide an example where two non-empty languages A and B, both subsets of {a, b}∗, satisfy the condition A* = B* but A is not equal to B?Let's consider the following example:
A = {a, aa}
B = {b, bb}
In this case, A* represents the Kleene closure (or Kleene star) of language A, which includes all possible concatenations and repetitions of strings in A, including the empty string ε. So A* would be {ε, a, aa, aaa, ...}.
Similarly, B* would be {ε, b, bb, bbb, ...}.
In this example, we can see that A* is equal to B* because both languages contain strings of varying lengths formed by repeating their respective symbols (a and b).
To summarize:
A* = {ε, a, aa, aaa, ...}
B* = {ε, b, bb, bbb, ...}
A != B
Learn more about initial strings
brainly.com/question/27099961
#SPJ11
A window in the shape of a semi circle has a radius of 40 cm. The window is shown below. Find the area of the window.
Answer:
[tex]A=2513.27\ cm^2[/tex]
Step-by-step explanation:
The radius of semicircle window, r = 40 cm
The area of semicircle is given by :
[tex]A=\dfrac{\pi r^2}{2}[/tex]
Substitute all the values in the above formula.
[tex]A=\dfrac{\pi \times 40^2}{2}\\\\A=2513.27\ cm^2[/tex]
So, the area of the window is equal to [tex]2513.27\ cm^2[/tex].
Someone pls help me solve this problem. No guessing
Use the photo below to solve for x
Answer:
x = 6
Step-by-step explanation:
9/x = 12/8
12x = 72
/12 /12
x = 6
hope this helps ^^
π (pi) is an unending decimal. Find the Circumference of the circle below using exact π (pi).
Step-by-step explanation:
Given radius, r = 5,
Circumference of Circle, C
[tex] = 2\pi \: r \\ = 2\pi(5) \\ = 10\pi \: units[/tex]
Answer:
[tex]10\pi[/tex]
Step-by-step explanation:
As the hint below says:
[tex]C = 2\pi r[/tex]
We also know that
r = 5
So thus:
[tex]C = 2 \pi \cdot 5 = 10\pi[/tex]
“Calculate the lengths of the 2 unlabeled sides”
Answer:
NL = 4.33
NM = 5
Step-by-step explanation:
tan 60° = NL/2.5
tan 60° = 1.7321
so:
1.7321 = NL/2.5
NL = (2.5)(1.7321)
NL = 4.33
cos 60° = 2.5/NM
cos 60° = 0.5
so:
0.5 = 2.5.NM
NM = 2.5/0.5
NM = 5
Let A be a connected and compact Jordan region with |A| > 0 and let ƒ: A → R be a function continuous on A. Prove that there exits xo E A such that 1 f(x₁) = = // f(x)dx. |A| A
The presence of xo in A with the end goal that 1/|A| ∫ f(x)dx = f(xo). This finishes the confirmation.
To demonstrate the presence of a point xo in A to such an extent that 1/|A| ∫ f(x)dx = f(xo), where A will be an associated and minimized Jordan district with |A| > 0 and ƒ: A → R is a nonstop capability, we can involve the Mean Worth Hypothesis for Integrals.
In the first place, we should characterize a capability F: A → R as F(t) = 1/|A| ∫ f(x)dx - f(t), where t is a point in A. We need to show that there exists xo in A to such an extent that F(xo) = 0.
Since A will be an associated and minimal Jordan locale, it is likewise a shut and limited subset of R^n. Subsequently, A will be a smaller set. We realize that consistent capabilities on minimized sets accomplish their greatest and least qualities.
Since F is a consistent capability on the minimized set A, it accomplishes its most extreme and least qualities. Let M = max{F(t) : t in A} and m = min{F(t) : t in A}.
We have two cases to consider:
Case 1: In the event that M ≤ 0 and m ≥ 0, F(t) = 0 for all t in A, including xo. For this situation, we have demonstrated the presence of xo to such an extent that 1/|A| ∫ f(x)dx = f(xo).
Case 2: If either M > 0 or m < 0, we accept without loss of over-simplification that M > 0. Since M is the greatest worth of F on A, there exists a point t1 in A with the end goal that F(t1) = M. Essentially, we expect to be that m < 0, and there exists a point t2 in A with the end goal that F(t2) = m.
Consider the consistent way γ(t) from t1 to t2 in A. Since An is associated, such a way exists. Presently, characterize another capability G: [0, 1] → R as G(s) = F(γ(s)).
We have G(0) = F(γ(0)) = F(t1) = M > 0, and G(1) = F(γ(1)) = F(t2) = m < 0. In this way, by the Halfway Worth Hypothesis, there exists a point s0 in [0, 1] with the end goal that G(s0) = 0.
Let xo = γ(s0). Since G(s0) = F(γ(s0)) = 0, we have F(xo) = 0. Subsequently, we have demonstrated the presence of xo in A to such an extent that 1/|A| ∫ f(x)dx = f(xo).
In the two cases, we have shown the presence of xo in A with the end goal that 1/|A| ∫ f(x)dx = f(xo). This finishes the confirmation.
To know more about Integrals refer to
https://brainly.com/question/31059545
#SPJ11
Conservative change function is given in terms of dimensionless variables as:
-dg/dt + (1-g^2)dg/dx =0, - [infinity]0
a) Which condition must g provide for function to oppose the traffic rules.
b) What is vehicles’ maximum velocity (Umax)=?
c) inital condition is given as: g(x,0)= 1-x. Find the value of g(1,1)=?
To oppose the traffic rules, the function g must satisfy |g(x)| > 1. The maximum velocity of the vehicles is Umax = 0. Finally, the value of g(1,1) is 0 based on the given initial condition.
a) For the function g to oppose the traffic rules, it must satisfy the condition |g(x)| > 1. In other words, the absolute value of g must be greater than 1. This condition indicates that the function represents a vehicle moving in the opposite direction of traffic flow.
b) To determine the maximum velocity of the vehicles (Umax), we can analyze the equation -dg/dt + (1-g^2)dg/dx = 0. By setting dg/dx = 0, we can find the critical points where the velocity is maximum. In this case, when g = ±1, the term (1-g^2) reaches its maximum value of 0. Therefore, the maximum velocity of the vehicles is Umax = 0.
c) Given the initial condition g(x,0) = 1 - x, we can find the value of g(1,1) by substituting x = 1 into the function. Thus, g(1,1) = 1 - 1 = 0. Therefore, the value of g(1,1) is 0.
In summary, to oppose the traffic rules, the function g must satisfy |g(x)| > 1. The maximum velocity of the vehicles is Umax = 0. Finally, the value of g(1,1) is 0 based on the given initial condition.
Know more about velocity here:
https://brainly.com/question/30559316
#SPJ11
Which of the following statements about group decision making is true? If enough time is available, groups usually make higher-quality decisions than most individuals. If enough time is available, most individuals usually make higher-quality decisions than a group. There are far more disadvantages than advantages to group decision making. Individual decisions are generally more difficult to reach than group decisions. Group decisions should rarely be used to address significant business problems.
The statement "If enough time is available, groups usually make higher-quality decisions than most individuals" is true.
Group decision-making has both advantages and disadvantages, but when enough time is available, groups tend to make higher-quality decisions compared to most individuals. This is due to several reasons. First, groups offer diverse perspectives and expertise, allowing for a broader range of ideas and insights.
Different individuals bring unique knowledge and experiences to the table, leading to a more comprehensive examination of the problem. Second, group decision-making involves collective scrutiny and evaluation of options, which helps in identifying potential flaws or biases in individual opinions.
Group discussions allow for critical analysis, debate, and challenging of assumptions, leading to a more thorough decision-making process. However, it is important to note that time constraints can impact the effectiveness of group decision-making. When time is limited, individual decision-making may be more efficient.
Additionally, the success of group decision-making also depends on factors such as group dynamics, effective communication, and skilled facilitation. Therefore, while groups have the potential for making higher-quality decisions, it is essential to consider the specific context and constraints when determining the most appropriate approach to decision making.
Learn more about decision-making here:
https://brainly.com/question/30697303
#SPJ11
Find the Volume. 5 1/2 x. 3 x 6 1/3
Answer:6
1/3
Step-by-step explanation:
Given the following sets, find the set (A U B) O (AUC). U = {1, 2, 3, ..., 10) 3 , A = {1, 2, 3, 7} B = {1, 3, 10} C = {1, 2, 3, 6, 8}
The set (A U B) O (AUC) is {1, 2, 3, 6, 7, 8, 10}.
The following steps can be used to find the set (A U B) O (AUC):
Step 1: Find A U B {1, 2, 3, 7} U {1, 3, 10} = {1, 2, 3, 7, 10}
Step 2: Find (A U B) U C({1, 2, 3, 7, 10} U {1, 2, 3, 6, 8}) = {1, 2, 3, 6, 7, 8, 10}
A set is a group of things. The objects (or elements) that make up a set are often listed within curly brackets, and sets are typically identified by a letter. It's important to keep in mind that a set is an unordered collection of objects, meaning that it doesn't matter what order the elements are listed in. are viewed as being equivalent.
Know more about set here:
https://brainly.com/question/31656454
#SPJ11
Bill has 29 more apps on his phone than Sherri, and they have a total of 99 apps. How many apps does each person have?
Sherri has 35 apps on her phone and Bill has 64 apps on his phone.
Let's represent Sherri’s apps with x.
Then, the number of Bill's apps will be x+29 (since he has 29 more apps than Sherri).
Their total number of apps is 99.Thus, the mathematical equation is:x + (x+29) = 99
Simplifying this equation gives:2x + 29 = 99
Subtracting 29 from both sides of the equation gives:2x = 70
Dividing both sides by 2 gives:x = 35
This means Sherri has 35 apps on her phone.
Substituting that into x+29 gives:35+29 = 64
Therefore, Bill has 64 apps on his phone.
Hence, each person has Sherri has 35 apps on her phone and Bill has 64 apps on his phone. The total number of apps between the two of them is 99 apps.
Know more about apps here,
https://brainly.com/question/32284707
#SPJ11
help me with this plesse
(Past Due) Need Help
I would say its the second one.
the student shouldve distributed the 2^3x+3 into 2^3x+9
PLAESE HELPPPPPPPP
What is the measure of the unknown angle?
A. 98
B. 100
C. 102
D. 108
Answer:
B 100
Step-by-step explanation:
A straight line is measure to 180°. n+80=180
Answer:
option B (100)
Step-by-step explanation:
The following table shows the number of miles (d) a car travels in t hours while driving at a constant speed of 55 miles per hour.
t 1 2 3 4 5
d 55 110 165 ? 275
How many miles will the car travel in 4 hours?
Answer: 220 miles
Step-by-step explanation:
Car goes 55 miles in 1 hour.
Constant speed.
Formula is 55t = d.
55 x 4 = 220 miles
Answer:
the guy above is right
Step-by-step explanation:
608 Skittles are shared in the ratio 3 : 5 . The larger share of Skittles is
Answer:
364.8/ 243.2
Step-by-step explanation:
ope this helps :b
Please help!!!I’ll mark you as brainliest!!!!
Round 0.206896552 to the nearest tenth as a percentage
Answer:
20%
Step-by-step explanation:
Answer:
20%
Step-by-step explanation:
0.206896552 rounded to the nearest tenth is 0.2 (The 0 in the hundredths place rounds down)
To find 0.2 as a percentage simply multiply it by 100
0.2*100=20%
Solve the following: 6 sin² x Your answer [APPL- 6 marks] 5 cos x 20 for 0 ≤ x ≤ 2π
The solutions are x = 0, π, and 2π for the trigonometric equation 6 sin² x = 5 cos x + 20.
To solve the given equation:
6 sin² x = 5 cos x + 20
We can use the trigonometric identity:
sin² x + cos² x = 1
Multiplying both sides by 6, we get:
6 sin² x + 6 cos² x = 6
Substituting 1 - sin² x for cos² x, we get:
6 sin² x + 6 (1 - sin² x) = 6
Simplifying the equation, we get:
6 - sin² x = 6
sin² x = 0
Taking the square root of both sides, we get:
sin x = 0
x = nπ, where n is an integer.
Substituting this value in the original equation, we get:
6(0)² = 5(cos(nπ)) + 20
0 = (-1)n + 4
n must be even for the equation to hold true. Therefore, the solutions are:
x = 0, π, and 2π.
To know more about trigonometric identity refer here:
https://brainly.com/question/31837053#
#SPJ11
PLEASE HELP!! DON'T JUST TAKE POINTS :(
The wingspan of a hawk is the distance from the end of one spread-out wing to the end of the other spread-out wing. A scientist measured the wingspans of a random sample of hawks at a national park. Based on the median wingspan of the sample, the scientist estimates that the median wingspan of all hawks in the national park is 40 inches. Which graph most likely represents the data from the scientist's sample?
Answer:
I think the most upright answer would be D
Step-by-step explanation:
The lumen output was determined for each of k = 3 different brands of lightbulbs having the same wattage, with n_j = 8 bulbs of each brand tested (this is the number of observations in each treatment group). The sums of squares were computed as MSTr = 297.850 and MSE = 227.619. State the hypotheses of interest (including word definitions of parameters).
µ_j = sample average lumen output for brand j bulbs
µ_o : µ_1≠µ_2≠µ_3
H_a: all three µ_j's are equal
µ_j = sample average lumen output for brand i bulbs
µ_o : µ_1=µ_2=µ_3
H_a: all three µ_j's are unequal
µ_j = true average lumen output for brand i bulbs
µ_o : µ_1≠µ_2≠µ_3
H_a: at least two µ_j's are equal
µ_j= true average lumen output for brand i bulbs
µ_o : µ_1=µ_2=µ_3
H_a: at least two µ_j's are unequal
Use the Single Factor ANOVA F test with (α = 0.05) to decide whether there are any differences in true average lumen outputs among the three brands for this type of bulb. Calculate the F test statistic then use software to find your p-value, Recall the p-value from an F test is always the area to the right of the F test statistic.
f statistic = _______ (Round your answer to two decimal places.)
p-value = ________(Round your answer to four places.)
State the conclusion in the problem context.
Fail to reject H_o. There are statistically significant differences in the lumen output.
Fail to reject H_o. There are no statistically significant differences in the lumen output.
Reject H_o. There are statistically significant differences in the lumen output. Reject H_o. There are no statistically significant differences in the lumen output.
Using the Single Factor ANOVA F test with a significance level of α = 0.05, the F test statistic can be calculated to determine if there are any differences in the true average lumen outputs among the three brands of lightbulbs.
The p-value is then obtained from the software. Based on the conclusion derived from the p-value, either the null hypothesis (H0) is rejected, indicating statistically significant differences in the lumen output, or it is failed to be rejected, suggesting no statistically significant differences.
To determine if there are any differences in the true average lumen outputs among the three brands of lightbulbs, a Single Factor ANOVA F test is conducted. The null hypothesis (H0) assumes that there are no differences, while the alternative hypothesis (Ha) suggests that there are differences among the means.
The F-test statistic is calculated by dividing the mean square between treatments (MSTr) by the mean square error (MSE). The F-test statistic is not provided in the question, so it needs to be calculated using the given information.
The p-value, which represents the probability of obtaining test results as extreme as observed or more extreme, is obtained using software. The p-value is the area to the right of the F-test statistic in the F-distribution.
Based on the obtained p-value and a significance level of α = 0.05, the conclusion is made. If the p-value is less than 0.05, the null hypothesis (H0) is rejected, indicating statistically significant differences in the lumen output among the three brands. If the p-value is greater than or equal to 0.05, the null hypothesis (H0) is failed to be rejected, suggesting no statistically significant differences.
The conclusion should be stated based on the calculated p-value and the significance level. It could either be "Reject H0. There are statistically significant differences in the lumen output" or "Fail to reject H0. There are no statistically significant differences in the lumen output."
To learn more about hypothesis click here: brainly.com/question/29576929
#SPJ11
there may be several different min-cut sets in a graph. using the analysis of the randomized min-cut algorithm, argue that there can be at most n(n − 1)/2 distinct min-cut sets.
The randomized min-cut algorithm, such as the Karger's algorithm, is an iterative algorithm that repeatedly contracts edges in a graph until only two nodes (or a small number of nodes) remain. At that point, the remaining edges represent a cut in the graph.
In each iteration of the algorithm, an edge is chosen uniformly at random to be contracted. This contraction merges the two nodes connected by the chosen edge into a single super-node. The process continues until only two nodes remain, representing the cut in the graph.
To analyze the algorithm, let's consider a graph with n vertices. At each iteration, the number of vertices decreases by one since two vertices are merged into one. Therefore, after k iterations, there are n - k vertices remaining in the graph.
Now, let's consider the number of distinct cuts that can be formed by the remaining vertices. For n vertices, the total number of possible cuts is [tex]2^(n-1)[/tex]since each vertex can be on one side of the cut or the other. However, some of these cuts may be identical because the order in which the vertices are contracted can change the representation of the cut.
To see why, suppose we have a set of vertices A and a set of vertices B. The order in which the vertices are contracted can result in different representations of the cut. For example, if we contract vertex A before vertex B, the cut might be represented as (A, B). However, if we contract vertex B before vertex A, the cut might be represented as (B, A). Both cuts are essentially the same, but the order of the vertices determines the representation.
Since there are (n-1) edges that need to be contracted to reach the final cut of two vertices, there are (n-1)! possible orders in which the vertices can be contracted. However, each order produces the same cut, so we need to divide by (n-1)! to account for the different representations.
Therefore, the number of distinct cuts that can be formed by the remaining vertices is [tex]2^(n-1)[/tex]/ (n-1)!. Simplifying this expression, we get:
[tex]2^(n-1) / (n-1)! = n(n-1)(n-2)...(2)(1) / (n-1)(n-2)...(2)(1) = n[/tex]
So, there can be at most n distinct min-cut sets in the graph.
In summary, using the analysis of the randomized min-cut algorithm, we can argue that there can be at most n(n - 1)/2 distinct min-cut sets.
Learn more about min-cut sets in a graph here:
https://brainly.com/question/31479200
#SPJ11
Is v = 0.5 a solution to this equation?
2.28 = 4.56v
Answer:
Step-by-step explanation:
Yes. Substituting 0.5 for v in 2.28 = 4.56v yields 2.28 = 2.28.
PLSSS HELP IMMEDIATELY!!! ILL GIVE BRAINIEST!!! (if u provide a link, i’m not giving u brainiest!)
Answer: B. (2,1)
Step-by-step explanation:
its not c because if you look at R you see that it is going 4,3 not 3,4 because when you doing ratios on a number line it goes x-axis then y-axis next not y-axis then the x-axis.
It's not D because if you look at Q you see that it is going 3,5 not 5,3 because when you doing ratios on a number line it goes x-axis then y-axis next not y-axis then x-axis.
That's the same thing for A so your answer is b.
Answer:
B.......................
The pathway of a frog jumping onto a lily pad can be represented by the equation h= -0.5t^2 +3t+2
Answer:
h = 6.5 feet
Step-by-step explanation:
The height of the frog as a function of time is given by :
[tex]h= -0.5t^2 +3t+2[/tex] .....(1)
We need to find the maximum height reached by the frog. We can find it as follows :
Put [tex]\dfrac{dh}{dt}=0[/tex]
So,
[tex]\dfrac{d}{dt}(-0.5t^2 +3t+2)=0\\\\-t+3=0\\\\t=3[/tex]
Put t = 3 in equation (1).
[tex]h= -0.5(3)^2 +3(3)+2\\\\h=6.5\ feet[/tex]
So, the maximum height is 6.5 feet.
You are conducting research using rhesus macaques (monkeys). For ethical reasons as well as limited resources, you decide to use only 9 animals, 3 animals in each of 3 treatment groups. To increase the power of your statistical testing, you take 10 samples from each animal. What statistical test might you use in this instance?
Your graduate student objects, saying that taking multiple samples from each animal cannot increase statistical power. How should you respond?
The response to your graduate student's objection of taking multiple samples from each animal cannot increase statistical power is:
You should respond by saying that taking multiple samples from each animal is a well-known strategy for increasing statistical power.
In addition, increasing the number of observations per group improves the statistical test's accuracy and reliability.
The statistical test that one would use in this instance is the One-way ANOVA, or one-factor ANOVA.
A statistical test that can be used in this instance is the One-way ANOVA, or one-factor ANOVA.
This statistical test is a method used to determine if the average or mean of a numerical variable varies significantly between two or more groups of interest.
For this statistical test, it is best to use multiple samples to increase statistical power.
In addition, ANOVA is used to compare three or more sets of data for statistical significance by testing for variances.
ANOVA's null hypothesis is that all populations are equal, while the alternative hypothesis is that at least one population is different from the others.
The response to your graduate student's objection of taking multiple samples from each animal cannot increase statistical power is:
You should respond by saying that taking multiple samples from each animal is a well-known strategy for increasing statistical power.
In addition, increasing the number of observations per group improves the statistical test's accuracy and reliability.
To know more about hypothesis visit:
https://brainly.com/question/606806
#SPJ11
To buy tickets online for a circus, there is a one-time processing fee of $5 and each
ticket costs $65. If Winston is buying tickets for himself and up to 3 of his friends, then
which statement below best represents this situation?
A. The domain is {70, 135, 200, 265).
B. The range is the total price of the tickets purchased and includes all whole numbers
from 1 to 4.
C. The range is {65, 130, 195).
D. The range is the total price of the tickets purchased and spans from 70 to 265.
I think the answer would be B. The range is then total price of the tickets purchased and includes all whole numbers from 1 to 4.
Prove that if A is a proper nonempty subset of a connected space X, then Bd(A) +0.
If A is proper "nonempty-subset" of "connected-space" X, then boundary of A, is nonempty because every point in A is either interior or exterior point.
In order to prove that if A is proper "nonempty-subset" of "connected-space" X, then boundary of A, which is denoted Bd(A), is nonempty, we proof this by contradiction.
We assume that A is proper "nonempty-subset" of "connected-space" X, and suppose, that Bd(A) is empty,
Since Bd(A) is set of all "boundary-points" of A, the assumption that Bd(A) is empty implies that there are no "boundary-points" in A,
If there are no "boundary-points" in A, it means that "every-point" in A is either an "interior" or "exterior-point" of A,
Consider the sets U = A ∪ X' and V = X\A, where X' represents the set of exterior points of A. Both U and V are open sets since A is a proper nonempty subset of X.
U and V are disjoint sets that cover X, i.e., X = U ∪ V,
Since X is a connected space, the only way for X to be written as a union of two nonempty disjoint open sets is if one of them is empty. Both U and V are nonempty since A is proper and nonempty.
So, the assumption that Bd(A) is empty leads to a contradiction with the connectedness of X.
Thus, Bd(A) must be nonempty when A is a proper nonempty subset of a connected space X.
By contradiction, we have shown that if A is a proper nonempty subset of a connected space X, then the boundary of A, Bd(A), is nonempty.
Learn more about Subset here
https://brainly.com/question/31955779
#SPJ4
The given question is incomplete, the complete question is
Prove that if A is a proper nonempty subset of a connected space X, then Bd(A) ≠Φ.