a ball is thrown at an angle of 45° to the ground. if the ball lands 81 m away, what was the initial speed of the ball? (round your answer to the nearest whole number. use g ≈ 9.8 m/s2.) v0 = m/s

Answers

Answer 1

The initial speed of the ball was approximately 39 m/s

We can use the kinematic equations of motion to solve for the initial speed of the ball. Since the ball is thrown at an angle of 45° to the ground, we know that its initial vertical velocity is equal to its initial horizontal velocity. We can use this fact to break down the initial velocity vector into its horizontal and vertical components.

Let's use the following variables:

v0: initial speed of the ball

θ: angle of the ball's initial velocity (45° in this case)

d: distance the ball travels (81 m in this case)

g: acceleration due to gravity (9.8 m/s^2)

Using the kinematic equation for the horizontal distance traveled by an object, we have:

[tex]d = v0*cos(θ)*t[/tex]

where t is the time it takes for the ball to travel the distance d. Since the ball is thrown at 45°, we have:

[tex]cos(45°) = √2/2[/tex]

Substituting this into the equation above, we get:

d = v0*(√2/2)*t

Using the kinematic equation for the vertical displacement of an object, we have:

[tex]y = v0*sin(θ)*t - (1/2)gt^2[/tex]

where y is the maximum height reached by the ball. Since the ball is thrown at 45°, we have:

sin(45°) = √2/2

Substituting this into the equation above, we get:

y = (v0*√2/2)[tex]*t - (1/2)gt^2[/tex]

Since the ball is thrown at an angle of 45°, the time it takes for the ball to reach its maximum height is equal to half the total time of flight. Therefore, we can express t in terms of d and v0 as:

t = d / (v0*cos(θ))

Substituting this expression for t into the equation for y, we get:

y = (v0√2/2)(d / (v0cos(θ))) - (1/2)g(d / (v0cos(θ)))[tex]^2[/tex]

Simplifying, we get:

y = (dsin(θ)√2)/(2cos[tex]^2(θ)) - (gd^2)/(2v0^2cos^2[/tex](θ))

Since we want to find v0, we can rearrange this equation to isolate v0:

v0 = √((gd[tex]^2)/(2ycos^2(θ)) - (d^2)/(4cos^4([/tex]θ)))

Plugging in the given values, we get:

v0 = √((9.8 m/[tex]s^2)(81 m)^2 / (2(0 m)(cos^2(45°))) - (81 m)^2 / (4(cos^4([/tex]45°))))

v0 ≈ 39 m/s

Therefore, the initial speed of the ball was approximately 39 m/s.

To know more about speed here

https://brainly.com/question/13943409

#SPJ4


Related Questions

Consider an absorbing. continuous-time Markov chain with possibly more than one absorbing states. (a) Argue that the continuous-time chain is absorbed in state a if and only if the embedded discrete-time chain is absorbed in state a. (b) Let 1 2 3 4 5 1(0 0 0 0 0 2 1 -3 2 0 0 2-3 0 2 4 20 4 0 0 2 -5 3 50 0 0 0 0 be the generator matrix for a continuous-time Markov chain. For the chain started in state 2, find the probability that the chain is absorbed in state 5

Answers

A). The continuous-time chain is absorbed in state an if and only if the embedded discrete-time chain is absorbed in state a.

(b) The probability that the chain is absorbed in state 5, given that it started in state 2, is 20/3.

[tex]N = (I-Q)^{-1},[/tex]

Q = 1 -3 2 0 0

2 -3 0 2 0

0 0 0 0 0

0 0 0 0 0

R = 2 0 0

0 4 2

0 0 50

I = 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Therefore, the fundamental matrix N is given by:

[tex]N = (I-Q)^{-1},[/tex]= 1.25 0.75 -0.5 0 0

2.5 3.5 -1.5 -2 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

A continuous-time chain is a mathematical model used to describe the behavior of a system that changes over time. It is a stochastic process that consists of a sequence of random variables, where each variable represents the state of the system at a specific time. The chain evolves in continuous time, meaning that the state of the system can change at any point in time, not just at discrete time intervals.

Continuous-time chains are used in many fields, including physics, biology, finance, and engineering, to model a wide range of phenomena such as the movement of particles in a fluid, the spread of disease in a population, or the behavior of financial markets. The behavior of a continuous-time chain can be analyzed using techniques from probability theory and stochastic processes, such as Markov chains, differential equations, and stochastic calculus.

To learn more about Continuous-time chain visit here:

brainly.com/question/30998902

#SPJ4

a 1.0-ma current of 1.6-mev protons strikes a 2.6-mev-high potential barrier 2.8 x 10-13 m thick. estimate the transmitted current.

Answers

The estimated transmitted current is 0.10 mA.

What is Proton?

A proton is a subatomic particle found in the nucleus of an atom. It has a positive electric charge and its mass is approximately 1 atomic mass unit (amu). Protons are one of the building blocks of matter and determine the atomic number and chemical properties of an element.

The transmission probability of the protons through the barrier can be calculated using the formula:

[tex]T = e^{(-2kd)[/tex]

where T is the transmission probability, k is the wavevector of the protons, and d is the thickness of the barrier.

The wavevector of the protons can be calculated using the de Broglie relation:

λ = h/p

where λ is the de Broglie wavelength, h is the Planck constant, and p is the momentum of the protons.

Substituting the values given in the problem, we get:

λ = h/p = h/(mv) = (6.626 x 10⁻³⁴ J.s)/[(1.67 x 10⁻²⁷ kg)(1.6 x 10⁶ m/s)] ≈ 2.4 x 10⁻¹⁵ m

The wavevector is then:

k = 2π/λ = 2π/(2.4 x 10⁻¹⁵ m) ≈ 2.6 x 10¹⁵ m⁻¹

Substituting the values of k and d into the formula for transmission probability, we get:

[tex]T = e^{(-2kd)} = e^{[-2(2.6 x 10^{15} m^{-1})(2.8 x 10^{-13 m)]}[/tex] ≈ 0.10

Therefore, the transmitted current is:

[tex]I_{transmitted[/tex] = T x [tex]I_{incident[/tex] = (0.10)(1.0 mA) = 0.10 mA

Learn more about Proton from the given link

https://brainly.com/question/1481324

#SPJ1

Avechile is being planed that is driven by a fly wheel engine it has to run for at least 30minute and develop teacly power of 500w
How much Energy will fly wheel need to supply?

Answers



The amount of energy that the fly wheel needs to supply depends on the efficiency of the engine and the amount of time it runs for, as well as the power output required. In this case, the engine must run for 30 minutes and develop a maximum power output of 500W.

The energy required is calculated using the equation Power x Time = Energy. This means that the flywheel needs to supply 500W multiplied by the 30 minute run time, equalling 15,000 Watt-minutes. This can also be written as 15kWh.

What is the average power loss in crab nebula?

Answers

The average power loss in the Crab Nebula is estimated to be around 4.6 × 10^38 erg/s, which is equivalent to about 2.2 million times the power output of the sun.

What's Crab Nebula

The Crab Nebula is a supernova remnant that emits radiation across the electromagnetic spectrum. The energy of this radiation is thought to come from the rotational energy of the pulsar at its center.

The power loss is due to the emission of radiation in the form of synchrotron radiation and inverse Compton scattering. These processes are responsible for producing the high-energy gamma-ray emission observed from the Crab Nebula.

Understanding the energy output of the Crab Nebula is important for studying the processes that occur in supernova remnants and for understanding the behavior of pulsars.

Learn more about crab Nebula at

https://brainly.com/question/6356626

#SPJ11

A 70 kg person can achieve the maximum speed of 2.5 m/s while running a 100 m dash. Treat the person as a point particle.
a. At this speed, what is the person's kinetic energy?
Express your answer with the appropriate units.
b. To what height above the ground would the person have to climb in a tree to increase his gravitational potential energy by an amount equal to the kinetic energy you calculated in part A?

Answers

Answer:

a. 218.75 J b. 0.3125m

Explanation:

A:

Kinetic energy is found using the formula [tex]KE = \frac{1}{2}*m*v^2[/tex]

Plugging in 2.5 m/s for velocity and 70 kg for mass we get 218.75 J

B:

To find the height the person has to reach for his kinetic energy to be equal to his potential energy you use the equation [tex]PE = m*g*h[/tex] and set the kinetic energy equation equal to the potential energy equations, in which you will get:

[tex]\frac{1}{2}*m*v^2=m*g*h\\ \frac{1}{2}*v^2=g*h\\ h=\frac{v^2}{2g}[/tex]

h = 0.3125 meters

Answer:

a. 218.75 J b. 0.3125m

Explanation:

A:

Kinetic energy is found using the formula [tex]KE = \frac{1}{2}*m*v^2[/tex]

Plugging in 2.5 m/s for velocity and 70 kg for mass we get 218.75 J

B:

To find the height the person has to reach for his kinetic energy to be equal to his potential energy you use the equation [tex]PE = m*g*h[/tex] and set the kinetic energy equation equal to the potential energy equations, in which you will get:

[tex]\frac{1}{2}*m*v^2=m*g*h\\ \frac{1}{2}*v^2=g*h\\ h=\frac{v^2}{2g}[/tex]

h = 0.3125 meters

If the S/N of the input signal is 4 and the intelligence signal is 10 kHz, what is the deviation? a. 100 kHz b. 145 kHz c. 160 kHz d. 200 kHz

Answers

If the S/N of the input signal is 4 and the intelligence signal is 10 kHz, what is the deviation is 200 kHz. The correct option d.

Deviation can be calculated using the formula:
Deviation = (S/N) x (Intelligence signal frequency)
Substituting the given values:
Deviation = (4) x (10 kHz) = 40 kHz
However, this only gives us the peak deviation. In frequency modulation, the actual deviation is determined by the modulation index, which is dependent on the amplitude of the intelligence signal.

Assuming a maximum modulation index of 5 (which is a typical value for FM broadcasting), the actual deviation can be calculated as:
Actual deviation = (Modulation index) x (Peak deviation)
Actual deviation = (5) x (40 kHz) = 200 kHz

The correct option d.

To learn more about Deviation & Modulation Index : https://brainly.com/question/15858152

#SPJ11

design a series rlc type bandpass filter with cutoff frequencies of 10 khz and 12 khz. assuming c = 80 pf, find r, l, and q.

Answers

To design a series RLC bandpass filter with cutoff frequencies of 10 kHz and 12 kHz, and C = 80 pF, you need to find R, L, and Q. The values for R, L, and Q are approximately 31.83 ohms, 25.13 μH, and 11.90, respectively.

To determine these values, follow these steps:

1. Calculate the center frequency (f0) and bandwidth (BW) using the given cutoff frequencies:
  f0 = (10 kHz + 12 kHz) / 2 = 11 kHz
  BW = 12 kHz - 10 kHz = 2 kHz

2. Calculate the filter's quality factor (Q):
  Q = f0 / BW = 11 kHz / 2 kHz = 5.5

3. Calculate the inductor value (L) using the center frequency and capacitance:
  L = 1 / (4 * π² * f0² * C) ≈ 25.13 μH
  where C = 80 pF = 80 * 10⁻¹² F

4. Calculate the resistance (R) using the quality factor, inductor, and center frequency:
  R = 2 * π * f0 * L / Q ≈ 31.83 ohms

With these values, you can design a series RLC bandpass filter with the desired characteristics.

To know more about bandpass filter click on below link:

https://brainly.com/question/30082432#

#SPJ11

A current-carrying rectangular coil of wire is placed in a magnetic field. The magnitude of the torque on the coil is NOT dependent upon which one of the following quantities?
(a) the direction of the current in the loop
(b) the magnitude of the current in the loop
(c) the area of the loop
(d) the orientation of the loop
(e) the magnitude of the magnetic field

Answers

The magnitude of the torque on the coil is NOT dependent upon (b) the magnitude of the current in the loop.

Understanding the torque on the coil

The torque on the coil is directly proportional to the product of the magnetic field strength and the area of the loop, as well as the sine of the angle between the magnetic field and the normal to the loop.

The direction of the current in the loop, the area of the loop, the orientation of the loop, and the magnitude of the magnetic field all affect the angle between the magnetic field and the normal to the loop, but not the magnitude of the torque.

Learn more about magnetic field at

https://brainly.com/question/12969925

#SPJ11

each of the following is a function from n × z to z. which of these are onto? (a) f(a, b) = 2a b (b) f(a, b) = b (c) f(a, b) = 2a b

Answers

Out of the three given functions from n × z to z, only f(a, b) = b is onto.

To determine which of these functions from n × z to z are onto, let's analyze each function individually.

(a) f(a, b) = 2ab

To be onto, every element in the codomain z must have a preimage in the domain n × z. Since a is in n (natural numbers), it is always non-negative, and the product 2ab will always be either positive or zero. However, the codomain z includes negative numbers, so not all elements in z can be obtained using this function. Therefore, f(a, b) = 2ab is not onto.

(b) f(a, b) = b

In this case, the function output depends only on b, which belongs to the set of integers z. Since b can be any integer, every element in the codomain z can be reached by choosing an appropriate b value. Therefore, f(a, b) = b is onto.

(c) f(a, b) = 2ab

This function is the same as the one in part (a). As explained earlier, since a is in n (natural numbers), the product 2ab will always be either positive or zero. The codomain z includes negative numbers, which cannot be obtained using this function. Therefore, f(a, b) = 2ab is not onto.

In summary, out of the three given functions from n × z to z, only f(a, b) = b is onto.

For more questions on onto - https://brainly.com/question/1573371

#SPJ11

Suppose a 25 mH inductor has a reactance of 95 S2. What would the frequency be in Hz? Grade Summary 0% 100% sin0 cosO cotanO asin acosO atanOacotan) sinh0 cosh0tanhO cotanh0 Degrees Radians

Answers

The  frequency in Hz, given the reactance and the inductor value would be approximately 605.11 Hz.

Reactance (X_L) = 2 * pi * frequency (f) * inductance (L)

In this case, the reactance (X_L) is 95 Ω and the inductance (L) is 25 mH (0.025 H). We can rearrange the formula to solve for the frequency (f):

Frequency (f) = Reactance (X_L) / (2 * pi * inductance (L))

Now, plug in the given values:

Frequency (f) = 95 Ω / (2 * pi * 0.025 H)

Calculate the result:

Frequency (f) ≈ 605.11 Hz

So, the frequency would be approximately 605.11 Hz.

For more questions on reactance - https://brainly.com/question/4425414

#SPJ11

Consider an asteroid with a radius of 17 km and a mass of 3.1×1015 kg . Assume the asteroid is roughly spherical. Suppose the asteroid spins about an axis through its center, like the Earth, with a rotational period T. What is the smallest value T can have before loose rocks on the asteroid's equator begin to fly off the surface?
ga is 7.4*10^-4

Answers

The smallest value of T for which loose rocks on the equator of the asteroid begin to fly off its surface is about 13.6 hours.

How can we determine the minimum value of T for which loose rocks on the equator of the asteroid begin to fly off its surface?

To solve this problem, we need to find the centrifugal force acting on a rock located on the equator of the asteroid due to its rotation. If the centrifugal force is greater than the gravitational force holding the rock on the asteroid's surface, the rock will fly off the surface.

The centrifugal force is given by:

F = mω²r

where m is the mass of the rock, ω is the angular velocity (i.e., 2π/T), and r is the distance from the rock to the axis of rotation. We want to find the minimum value of T for which the centrifugal force exceeds the gravitational force.

The gravitational force holding the rock on the surface is given by:

Fg = GmM/R²

where G is the gravitational constant, M is the mass of the asteroid, and R is its radius. We can assume that R is much larger than the radius of the rock, so we can use R as the distance from the rock to the center of the asteroid.

Setting F = Fg, we have:

mω²r = GmM/R²

Simplifying, we get:

ω²r = GM/R³

Solving for T, we get:

T = 2π√(R³/GM)

Substituting the given values, we get:

T = 2π√((17 km)³/(6.67×10^-11 Nm²/kg² × 3.1×10^15 kg))

T ≈ 13.6 hours

Therefore, the smallest value of T for which loose rocks on the equator of the asteroid begin to fly off its surface is about 13.6 hours.

Learn more about centrifugal force

brainly.com/question/17167298

#SPJ11

The smallest value of T for which loose rocks on the equator of the asteroid begin to fly off its surface is about 13.6 hours.

How can we determine the minimum value of T for which loose rocks on the equator of the asteroid begin to fly off its surface?

To solve this problem, we need to find the centrifugal force acting on a rock located on the equator of the asteroid due to its rotation. If the centrifugal force is greater than the gravitational force holding the rock on the asteroid's surface, the rock will fly off the surface.

The centrifugal force is given by:

F = mω²r

where m is the mass of the rock, ω is the angular velocity (i.e., 2π/T), and r is the distance from the rock to the axis of rotation. We want to find the minimum value of T for which the centrifugal force exceeds the gravitational force.

The gravitational force holding the rock on the surface is given by:

Fg = GmM/R²

where G is the gravitational constant, M is the mass of the asteroid, and R is its radius. We can assume that R is much larger than the radius of the rock, so we can use R as the distance from the rock to the center of the asteroid.

Setting F = Fg, we have:

mω²r = GmM/R²

Simplifying, we get:

ω²r = GM/R³

Solving for T, we get:

T = 2π√(R³/GM)

Substituting the given values, we get:

T = 2π√((17 km)³/(6.67×10^-11 Nm²/kg² × 3.1×10^15 kg))

T ≈ 13.6 hours

Therefore, the smallest value of T for which loose rocks on the equator of the asteroid begin to fly off its surface is about 13.6 hours.

Learn more about centrifugal force

brainly.com/question/17167298

#SPJ11

A box having a mass of 1.5 kg is accelerated across a table at 1.5 m/s2. The coefficient of friction on the box is 0.3. What is the force being applied to the box? If this force were applied by a spring, what would the spring constant have to be in order for the spring to be stretched to only 0.08 m while pulling the box?

Answers

To determine the force being applied to the box, we can use Newton's second law of motion:

Force = mass x acceleration

Plugging in the given values, we get:

Force = 1.5 kg x 1.5 m/s²

Force = 2.25 N

Therefore, the force being applied to the box is 2.25 N.

To find the spring constant required to stretch the spring only 0.08 m while pulling the box, we can use Hooke's law:

Force = spring constant x displacement

Plugging in the given values, we get:

2.25 N = k * 0.08 m

Solving for the spring constant, we get:

k = 2.25 N / 0.08 m

k = 28.125 N/m

Therefore, the spring constant would have to be 28.125 N/m in order for the spring to be stretched to only 0.08 m while pulling the box with a force of 2.25 N.

an ideal gas expands from 28.0 l to 92.0 l at a constant pressure of 1.00 atm. then, the gas is cooled at a constant volume of 92.0 l back to its original temperature. it then contracts back to its original volume without changing temperature. find the total heat flow, in joules, for the entire process.

Answers

The event of energy being converted into particles and antiparticles occurred when the universe was less than one second old. During this time, the universe was a hot, dense soup of particles, including quarks, leptons, and photons.

The universe began with the Big Bang, which occurred approximately 13.8 billion years ago. At this time, the universe was a hot, dense soup of particles, including quarks, leptons, and photons. The first event to occur after the Big Bang was the conversion of energy into particles and antiparticles. This process, known as particle-antiparticle annihilation, occurred when the universe was less than one second old. Next, protons and neutrons fused to form nuclei such as deuterium and helium. This process, known as nucleosynthesis, occurred when the universe was between one and three minutes old. After nucleosynthesis, the universe consisted of a hot, dense plasma of charged particles. Over time, the universe expanded and cooled, allowing electrons to settle down around nuclei and form neutral atoms. This process, known as recombination, occurred when the universe was approximately 380,000 years old.

Once recombination occurred, the universe became transparent to radiation, allowing light to travel freely through space. This radiation is known as the cosmic microwave background and is observed today as a faint glow in the sky. Finally, stars and galaxies began to form from the clumps of matter that had been created during nucleosynthesis. The first stars are thought to have formed when the universe was approximately 100 million years old. The Milky Way galaxy, which contains our solar system, is estimated to have formed about 13.6 billion years ago, making it one of the oldest galaxies in the universe.

To know more about Universe visit:

https://brainly.com/question/9724831

#SPJ11

The total heat flow for the entire process is zero. This is because the process is a closed cycle, where the gas expands and cools, then contracts back to its original volume without any change in temperature.

To explain further, during the first stage of the process where the gas expands from 28.0 l to 92.0 l at a constant pressure of 1.00 atm, the gas does work on its surroundings and absorbs heat from its surroundings to maintain a constant temperature. This is known as an isothermal process.
During the second stage, where the gas is cooled at a constant volume of 92.0 l back to its original temperature, the gas releases heat to its surroundings to maintain a constant volume. This is known as an isochoric process.
During the final stage of the process, where the gas contracts back to its original volume without changing temperature, the gas does work on its surroundings and releases heat to maintain a constant temperature. This is known as an isothermal process.
Since the process is a closed cycle, the total work done by the gas is equal to the total heat absorbed and released by the gas. Therefore, the total heat flow for the entire process is zero.
The total heat flow for the entire process is zero because the process is a closed cycle and the work done by the gas is equal to the heat absorbed and released by the gas.

For more information on heat energy kindly visit to

https://brainly.com/question/29210982

#SPJ11

For a velocity field given by the equation, V = x2yi - y2xj + xyk, determine whether or not this flow field is incompressible. Determine an expression for the vorticity of the flow field described by: V = -xy3i + y4j Is the flow irrotational or rotational? Explain.

Answers

The flow is rotational because the curl of the velocity field is nonzero, which implies that there is rotation in the flow. The fact that the vorticity is not zero confirms this.

The divergence of a Gradient vector field V is given by: div(V) = ∂Vx/∂x + ∂Vy/∂y + ∂Vz/∂z.

In this case, the velocity field is given by V = x² y i - y² x j + xy k.

Calculating the divergence:

div(V) = ∂(x² y)/∂x + ∂(-y² x)/∂y + ∂(xy)/∂z

= 2xy - 2yx + 0

= 0

curl(V) = (∂Vz/∂y - ∂Vy/∂z) i + (∂Vx/∂z - ∂Vz/∂x) j + (∂Vy/∂x - ∂x/∂y) k

In this case, Vx = -xy³, Vy = [tex]y^4[/tex], and Vz = 0, so:

curl(V) = (-3y² i - x j) + 0k

The vorticity is the magnitude of the curl, so:

|curl(V)| = √((-3y²)² + x²)

A gradient refers to the rate of change in a variable, typically represented as a slope or derivative. In mathematics, a gradient is a vector that indicates both the direction and magnitude of the greatest rate of change in a function. It is calculated by taking the partial derivatives of the function with respect to each variable and then combining them into a vector.

Gradients are used in a wide range of applications, including optimization problems, computer graphics, and machine learning. In optimization, the gradient is used to find the minimum or maximum value of a function by iteratively adjusting the input variables in the direction of steepest descent or ascent. In computer graphics, gradients are used to create smooth transitions between colors or shades of an image.

To learn more about Gradient visit here:

brainly.com/question/31239153

#SPJ4

a snicker’s bar has 273 calories, where 1 calorie is equal to 4180j. how does work performed compare to the energy in a snicker’s bar?

Answers

1,140,940 joules are in one Snickers bar. We need to know the work accomplished, which is typically expressed in joules, in order to compare it to the energy in a Snickers bar.

To compare the work performed to the energy in a Snickers bar, we'll first need to convert the calories to joules.

1. Convert calories to joules:
A Snickers bar has 273 calories. Since 1 calorie is equal to 4180 joules, we can use the conversion factor to find the energy in joules.

Energy (in joules) = Calories × Conversion factor
Energy (in joules) = 273 calories × 4180 joules/calorie

2. Calculate the energy in joules:
Energy (in joules) = 1,140,940 joules

Now we know that the energy in a Snickers bar is 1,140,940 joules. To compare work performed to the energy in a Snickers bar, we need to know the work performed, which is usually given in joules. Work performed can be calculated as:

Work Performed = Force × Distance × cos(θ)

where Force is measured in newtons (N), Distance is measured in meters (m), and θ is the angle between the force and the direction of movement.

Once you have the work performed in joules, you can compare it to the energy in a Snickers bar (1,140,940 joules) to see the relationship between them.

For more such questions on work, click on:

https://brainly.com/question/62183

#SPJ11

as an admirer of thomas young, you perform a double-slit experiment in his honor. you set your slits 1.03 mm apart and position your screen 3.93 m from the slits. although young had to struggle to achieve a monochromatic light beam of sufficient intensity, you simply turn on a laser with a wavelength of 631 nm . how far on the screen are the first bright fringe and the second dark fringe from the central bright fringe? express your answers in millimeters.

Answers

The second dark fringe is approximately 4.85 mm from the central bright fringe. We can use the formula d(sinθ) = mλ to calculate the position of the bright and dark fringes. First, we need to calculate the distance between the slits and the screen in meters:

3.93 m

Next, we need to calculate the distance between the slits:

1.03 mm = 0.00103 m

We can use this distance as the distance between the two sources (the two slits).

The wavelength of the laser is given as:

631 nm = 0.000631 m

We will use this value for λ.

Now we can calculate the angle θ for the first bright fringe:

m = 1 (since we're looking for the first bright fringe)

d = 0.00103 m

λ = 0.000631 m

θ = sin⁻¹(mλ/d)

θ = sin⁻¹(0.000631/0.00103)

θ ≈ 0.617 radians

To find the position of the first bright fringe on the screen, we multiply θ by the distance between the slits and the screen:

x = θd

x = 0.617 x 3.93

x ≈ 2.43 mm

So the first bright fringe is approximately 2.43 mm from the central bright fringe.

To find the position of the second dark fringe, we use the same formula but with m = 2:

θ = sin⁻¹(2λ/d)

θ ≈ 1.235 radians

x = θd

x = 1.235 x 3.93

x ≈ 4.85 mm

So the second dark fringe is approximately 4.85 mm from the central bright fringe.

learn more about dark fringe here: brainly.com/question/27548790

#SPJ11

a machine has an 750 g steel shuttle that is pulled along a square steel rail by an elastic cord . the shuttle is released when the elastic cord has 18.0 n tension at a 45∘ angle. What is the initial acceleration of the shuttle?

Answers

The initial acceleration of the steel shuttle is approximately 16.97 m/s².

To find the initial acceleration of the 750 g steel shuttle, we will use the following terms: tension, angle, mass, force, and acceleration. Here are the steps to calculate the acceleration:

1. Convert the mass of the shuttle to kilograms: 750 g = 0.75 kg.

2. Determine the horizontal component of the tension force, which is the force acting on the shuttle. Since the tension is at a 45° angle, we will use the cosine function to find the horizontal component: F_horizontal = Tension * cos(angle) = 18.0 N * cos(45°) = 18.0 N * 0.7071 ≈ 12.73 N.

3. Use Newton's second law of motion, which states that Force = mass * acceleration, to find the acceleration of the shuttle: F_horizontal = m * a.

4. Solve for the acceleration (a): a = F_horizontal / m = 12.73 N / 0.75 kg ≈ 16.97 m/s².

So, the initial acceleration of the steel shuttle is approximately 16.97 m/s².

To know more about acceleration click on below link :

https://brainly.com/question/17289744

#SPJ11

The initial acceleration of the steel shuttle is approximately 16.97 m/s².

To find the initial acceleration of the 750 g steel shuttle, we will use the following terms: tension, angle, mass, force, and acceleration. Here are the steps to calculate the acceleration:

1. Convert the mass of the shuttle to kilograms: 750 g = 0.75 kg.

2. Determine the horizontal component of the tension force, which is the force acting on the shuttle. Since the tension is at a 45° angle, we will use the cosine function to find the horizontal component: F_horizontal = Tension * cos(angle) = 18.0 N * cos(45°) = 18.0 N * 0.7071 ≈ 12.73 N.

3. Use Newton's second law of motion, which states that Force = mass * acceleration, to find the acceleration of the shuttle: F_horizontal = m * a.

4. Solve for the acceleration (a): a = F_horizontal / m = 12.73 N / 0.75 kg ≈ 16.97 m/s².

So, the initial acceleration of the steel shuttle is approximately 16.97 m/s².

To know more about acceleration click on below link :

https://brainly.com/question/17289744

#SPJ11

(a) find the power of the lens necessary to correct an eye with a far point of 26.1 cm

Answers

The power of the lens necessary to correct an eye with a far point of 26.1 cm is approximately 3.83 diopters.

To find the power of the lens necessary to correct an eye with a far point of 26.1 cm, we can use the formula:

Power (P) = 1 / focal length (f)

The far point is the distance at which the eye can see clearly. In this case, it is 26.1 cm or 0.261 meters. To correct the vision, the lens should have a focal length equal to the far point.

Focal length (f) = 0.261 meters

Now, we can calculate the power:

P = 1 / 0.261
P ≈ 3.83 diopters

Therefore, a lens with a power of approximately 3.83 diopters is necessary to correct an eye with a far point of 26.1 cm.

Learn more about far point here: https://brainly.com/question/29568190

#SPJ11

calculate the peak voltage of a generator that rotates its 260 turns, 0.100 m diameter coil at 3600 rpm in a 0.810 t field.

Answers

The peak voltage of a generator that rotates its 260 turns, 0.100 m diameter coil at 3600 rpm in a 0.810 T field is 623.58 volts.

To calculate the peak voltage of a generator that rotates its 260-turn, 0.100 m diameter coil at 3600 rpm in a 0.810 T field, you'll need to use the following formula:
Peak Voltage (V_peak) = NBAω

Where:
N = number of turns (260 turns)
B = magnetic field strength (0.810 T)
A = area of the coil
ω = angular velocity in radians per second

First, calculate the area of the coil:
A = π(r²)
A = π(0.050²) (since the diameter is 0.100 m, radius is half of it, 0.050 m)
A ≈ 0.007854 m²

Next, convert the rotational speed from rpm to radians per second:
ω = (3600 rpm * 2π) / 60
ω ≈ 377.0 rad/s

Now, plug the values into the formula:
V_peak = (260 turns) * (0.810 T) * (0.007854 m²) * (377.0 rad/s)
V_peak ≈ 623.58 V

The peak voltage of the generator is approximately 623.58 volts.

Learn more about voltage:

https://brainly.com/question/24858512

#SPJ11

How many photons per second enter one eye if you look directly at a 100 W light bulb 2.00 m away? Assume a pupil diameter of 4.00 mm and a wavelength of 600 nm. How many photons per second enter your eye if a 1.00 m W laser beam is directed into your eye? λ=633nm)

Answers

The number of photons per second that enter the eye can be calculated using the formula:

N = (P / A) x (t / h) x (1 / E)

where:

P = power of the light source (in watts)

A = area of the pupil (in square meters)

t = transmission coefficient of the cornea and lens (assumed to be 0.95)

h = Planck's constant (6.626 x 10[tex]^-34[/tex] joule-seconds)

E = energy per photon (in joules)

For the 100 W light bulb:

P = 100 W

A = π (0.002 m)^2 = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex] J·s (given)

λ = 600 nm = 6.00 x 10[tex]^-7 m[/tex] (given)

c = speed of light = 3.00 x 10m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.0[tex]^8[/tex]0 x 10[tex]^8[/tex] m/s) / (6.00 x 10[tex]^-7 m[/tex]) = 3.31 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (100 W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.31 x 10[tex]^-19[/tex] J)

= 7.70 x 10^16 photons/s

Therefore, about 7.70 x 10[tex]^16[/tex]  photons per second enter one eye when looking directly at a 100 W light bulb from a distance of 2.00 m.

For the 1.00 mW laser beam:

P = 1.00 x 10[tex]^-3[/tex] W

A = π (0.002 m[tex])^2[/tex] = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex]J·s (given)

λ = 633 nm = 6.33 x 10[tex]^-7[/tex] m (given)

c = speed of light = 3.00 x 10[tex]^8[/tex] m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.00 x 10[tex]^8[/tex]m/s) / (6.33 x 10[tex]^-7[/tex]m) = 3.14 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (1.00 x 10[tex]^-3[/tex]W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.14 x 10[tex]^-19[/tex]J)

= 7.17 x 10^[tex]12[/tex] photons/s

Therefore, about 7.17 x 10[tex]^12[/tex] photons per second enter your eye if a 1.00 mW laser beam with a wavelength of 633 nm is directed into your eye.

To know more about stress here

https://brainly.com/question/11819849

#SPJ4

The number of photons per second that enter the eye can be calculated using the formula:

N = (P / A) x (t / h) x (1 / E)

where:

P = power of the light source (in watts)

A = area of the pupil (in square meters)

t = transmission coefficient of the cornea and lens (assumed to be 0.95)

h = Planck's constant (6.626 x 10[tex]^-34[/tex] joule-seconds)

E = energy per photon (in joules)

For the 100 W light bulb:

P = 100 W

A = π (0.002 m)^2 = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex] J·s (given)

λ = 600 nm = 6.00 x 10[tex]^-7 m[/tex] (given)

c = speed of light = 3.00 x 10m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.0[tex]^8[/tex]0 x 10[tex]^8[/tex] m/s) / (6.00 x 10[tex]^-7 m[/tex]) = 3.31 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (100 W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.31 x 10[tex]^-19[/tex] J)

= 7.70 x 10^16 photons/s

Therefore, about 7.70 x 10[tex]^16[/tex]  photons per second enter one eye when looking directly at a 100 W light bulb from a distance of 2.00 m.

For the 1.00 mW laser beam:

P = 1.00 x 10[tex]^-3[/tex] W

A = π (0.002 m[tex])^2[/tex] = 1.2566 x 10[tex]^-5 m^2[/tex] (assuming the pupil is circular)

t = 0.95 (given)

h = 6.626 x 10[tex]^-34[/tex]J·s (given)

λ = 633 nm = 6.33 x 10[tex]^-7[/tex] m (given)

c = speed of light = 3.00 x 10[tex]^8[/tex] m/s (assumed)

E = hc / λ = (6.626 x 10[tex]^-34[/tex] J·s) x (3.00 x 10[tex]^8[/tex]m/s) / (6.33 x 10[tex]^-7[/tex]m) = 3.14 x 10[tex]^-19[/tex] J

Plugging in the values:

N = (1.00 x 10[tex]^-3[/tex]W / 1.2566 x 10[tex]^-5 m^2[/tex]) x (0.95) x (1 s / 6.626 x 10[tex]^-34[/tex] J·s) x (1 / 3.14 x 10[tex]^-19[/tex]J)

= 7.17 x 10^[tex]12[/tex] photons/s

Therefore, about 7.17 x 10[tex]^12[/tex] photons per second enter your eye if a 1.00 mW laser beam with a wavelength of 633 nm is directed into your eye.

To know more about stress here

https://brainly.com/question/11819849

#SPJ4

A sump pump is draining a flooded basement at the rate of 0.600 L/s, with an output pressure of 3.00 ? 105 N/m2. Neglect frictional losses in both parts of this problem.
(a) The water enters a hose with a 3.00 cm inside diameter and rises 2.50 m above the pump. What is its pressure at this point?
_____N/m2
(b) The hose then loses 1.80 m in height from this point as it goes over the foundation wall, and widens to 4.00 cm diameter. What is the pressure now?
_____N/m2

Answers

a. The pressure of the water that enters a hose with a 3.00 cm inside diameter and rises 2.50 m above the pump is 276,475 N/m².

b. The pressure after losing 1.80 m in height and widening to 4.00 cm diameter is 293,715 N/m².

To find the pressure of the water 2.50 m above the pump, we need to account for the change in potential energy. The pressure at this point can be calculated using the following formula:

P2 = P1 - ρgh

where P1 is the initial pressure (3.00 × 10^5 N/m²), ρ is the density of water (approximately 1000 kg/m³), g is the acceleration due to gravity (9.81 m/s²), and h is the height difference (2.50 m).

P2 = 3.00 × 10⁵ N/m₂ - (1000 kg/m³)(9.81 m/s²)(2.50 m)

P2 ≈ 276,475 N/m²

The pressure of the water 2.50 m above the pump is approximately 276,475 N/m².

To find the pressure after losing 1.80 m in height and widening to 4.00 cm diameter, we can use the same formula, adjusting the height difference accordingly:

P3 = P2 + ρgh'

where h' is the new height difference (1.80 m).

P3 = 276,475 N/m² + (1000 kg/m³)(9.81 m/s²)(1.80 m)

P3 ≈ 293,715 N/m²

The pressure after losing 1.80 m in height and widening to 4.00 cm diameter is approximately 293,715 N/m².

Learn more about pressure: https://brainly.com/question/14205367

#SPJ11

A 10 kg sack slides down a smooth surface. If the normal force on the surface at the flat spot, A is 98.1 N (↑↑), the radius of the curvature is _____.a. 0.2 mb. 0.4 mc. 1.0 md. None of the above.

Answers

The radius of the curvature is 1.0 m (option c)  If the normal force on the surface at the flat spot, A is 98.1 N (↑↑) .

To calculate the radius of curvature using this formula:
radius of curvature (r) = (mass × acceleration due to gravity) / normal force

Step 1: Identify the mass (m), acceleration due to gravity (g), and normal force (N).
mass (m) = 10 kg
acceleration due to gravity (g) = 9.81 m/s²
normal force (N) = 98.1 N

Step 2: Plug in the values into the formula.
radius of curvature (r) = (10 kg × 9.81 m/s²) / 98.1 N

Step 3: Perform the calculations.
radius of curvature (r) = (98.1 kg m/s²) / 98.1 N

Step 4: Simplify the result.
radius of curvature (r) = 1 m

So, the radius of the curvature is 1.0 m .Hence, option c is correct.

To know more about Normal force refer here :

https://brainly.com/question/31377954

#SPJ11

ULF (ultra low frequency) electromagnetic waves, produced in the depths of outer space, have been observed with wavelengths in excess of 29 million kilometers.
Part A
What is the period of such a wave?

Answers

According to the question the period of the ULF wave is 10 seconds.

What is period?

Period is the term used to describe the monthly cycle of a woman's reproductive system. During each menstrual cycle, a woman's body prepares for pregnancy. The egg is released from the ovary and travels through the Fallopian tubes to the uterus.

We can calculate the period of an ULF wave with the following formula:
Period (T) = 1/Frequency (f)
Since we don't know the exact frequency of the ULF wave, we can calculate an approximate period by using the wavelength (λ) of the wave, which is given as 29 million kilometers. Using the following formula, we can calculate the frequency of the wave:
Frequency (f) = Speed of light (c) / Wavelength (λ)
Substituting the values, we get:
f = 3 x 10⁸ m/s / 29 x 10⁶ km
f = 0.1 Hz
Now, we can calculate the period of the ULF wave using the formula:
T = 1/f
T = 1/0.1
T = 10 s
Therefore, the period of the ULF wave is 10 seconds.

To learn more about period
https://brainly.com/question/29813582
#SPJ1

According to the question the period of the ULF wave is 10 seconds.

What is period?

Period is the term used to describe the monthly cycle of a woman's reproductive system. During each menstrual cycle, a woman's body prepares for pregnancy. The egg is released from the ovary and travels through the Fallopian tubes to the uterus.

We can calculate the period of an ULF wave with the following formula:
Period (T) = 1/Frequency (f)
Since we don't know the exact frequency of the ULF wave, we can calculate an approximate period by using the wavelength (λ) of the wave, which is given as 29 million kilometers. Using the following formula, we can calculate the frequency of the wave:
Frequency (f) = Speed of light (c) / Wavelength (λ)
Substituting the values, we get:
f = 3 x 10⁸ m/s / 29 x 10⁶ km
f = 0.1 Hz
Now, we can calculate the period of the ULF wave using the formula:
T = 1/f
T = 1/0.1
T = 10 s
Therefore, the period of the ULF wave is 10 seconds.

To learn more about period
https://brainly.com/question/29813582
#SPJ1

find the charge stored when 5.6 v is applied to an 8-pf capacitor.

Answers

The charge stored in the capacitor is 44.8 μC.

The formula for calculating the charge stored in a capacitor is Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. Given that the voltage applied is 5.6 V and the capacitance is 8 pF (pico-farads), we can substitute these values into the formula.

Q = (8 pF) x (5.6 V) = 44.8 μC

So, the charge stored in the capacitor is 44.8 μC (micro-coulombs). Capacitors store electric charge when a voltage is applied across their terminals, and the capacitance is a measure of their ability to store charge. In this case, the capacitor with a capacitance of 8 pF can store a charge of 44.8 μC when a voltage of 5.6 V is applied.

For more questions like Capacitor click the link below:

https://brainly.com/question/17176550

#SPJ11

the molar mass of a compound if 74.14 g/mol and its empirical formula is c4h10o. what is the molecular formula of this compound?

Answers

The molecular formula's empirical formula unit count is indicated by this ratio. In order to obtain the subscripts for the molecular formula, we can round this ratio to the nearest whole number. The chemical formula is C2H2O2.

What is produced by a hydrocarbon with a molecular mass of 72 g mol?

image outcome

On photochlorination, a hydrocarbon with a molecular mass of 72 g/mol yields one monochloro derivative and two dichloro derivatives.

What are Methyl propyl etherfour alcohol isomers?

Butan-1-ol, butan-2-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol are the four isomers of alcohol Methyl propyl ether. Compounds called isomers have the same number of atoms, but they are arranged differently in space.

To know more about molecular visit:-

https://brainly.com/question/19616663

#SPJ1

a diffraction grating has 2,160 lines per centimeter. at what angle in degrees will the first-order maximum be for 540 nm wavelength green light? (no response) seenkey 6.7 °

Answers

The first-order maximum for 540 nm wavelength green light with a diffraction grating of 2,160 lines per centimeter will be at an angle of 6.7°.

To find the angle of the first-order maximum for a 540 nm wavelength green light with a diffraction grating having 2,160 lines per centimeter, we can use the grating equation,
nλ = d sinθ
where n is the order of maximum (n = 1 for first-order maximum), λ is the wavelength of light (540 nm), d is the distance between the lines (inverse of the number of lines per centimeter), and θ is the angle we want to find.

1. Convert lines per centimeter to distance between lines (d):
d = 1 / 2,160 lines/cm = 1 / (2,160 x 10^2 lines/m) = 1 / 2.16 x 10^5 lines/m
d = 4.63 x 10^-6 m

2. Convert the wavelength from nm to m:
λ = 540 nm = 540 x 10^-9 m

3. Use the grating equation to find the angle θ:
1(540 x 10^-9 m) = (4.63 x 10^-6 m) sinθ
sinθ = (540 x 10^-9 m) / (4.63 x 10^-6 m)

4. Calculate sinθ:
sinθ = 0.1166

5. Find the angle θ:
θ = arcsin(0.1166) = 6.7°

With a 2,160-line-per-centimeter diffraction grating, the first-order maximum for green light with a wavelength of 540 nm will be at an angle of 6.7°.

Learn more about "wavelength": https://brainly.com/question/10750459

#SPJ11

the magnetic field 41.0 cm away from a long, straight wire carrying current 6.00 a is 2930 nt. (a) at what distance is it 293 nt?

Answers

At a distance of 410 cm from the wire, the magnetic field is 293 nT, Straight wire carrying current 6.00 a is 2930 nt.

To answer this question, we will use the formula for the magnetic field B around a straight wire carrying current I:
B = (μ₀ * I) / (2 * π * d)
where μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), I is the current, and d is the distance from the wire.
Given the initial magnetic field B₁ = 2930 nT, the current I = 6.00 A, and distance d₁ = 41.0 cm, we can calculate the distance d₂ where the magnetic field is B₂ = 293 nT.
We first find the ratio of the magnetic fields:
B₁ / B₂ = 2930 nT / 293 nT = 10
Since the magnetic field is inversely proportional to the distance, the ratio of distances is:
d₂ / d₁ = 10
Now, we can solve for d₂:
d₂ = 10 * d₁ = 10 * 41.0 cm = 410 cm

To know more about magnetic field please refer: https://brainly.com/question/23096032

#SPJ11

An elevator weighing 2400 N ascends at a constant speed of 7.0 m/s. How much power must the motor supply to do this?

Answers

The motor must supply 16.8kW of power.

Explain power.

The quantity of energy transferred or transformed per unit of time is known as power. The watt, or one joule per second, is the unit of power in the International System of Units. Power is also referred to as activity in ancient writings. A scalar quantity is power.

Power is the pace at which work is completed or energy is delivered; it can be expressed as the product of work completed (W) or energy transferred (E) divided by time (t).

F is 2400N

v is 7m/s

Power will be 2400*7 i.e. 16,800W.

To learn more about power use:

https://brainly.com/question/11569624

#SPJ1

As a general rule, the normal distribution is used to approximate the sampling distribution of the sample proportion only if:
the underlying population is normal.
the population proportion rhorho is close to 0.50
None of the suggested answers are correct
the sample size ηη is greater than 30
np(1 - p) > 5

Answers

The correct answer for normal distribution is "np(1 - p) > 5".

The normal distribution is used to approximate the sampling distribution of the sample proportion only if the sample size is large enough, which is determined by the formula np(1 - p) > 5, where n is the sample size and p is the sample proportion. This criterion ensures that the sampling distribution is approximately normal, even if the underlying population is not normal or the population proportion is not close to 0.5.

Therefore, if the sample size is smaller than 30 and/or np(1 - p) is not greater than 5, the normal distribution may not be an appropriate approximation for the sampling distribution of the sample proportion. In those cases, other methods, such as the t-distribution or the binomial distribution, may be more appropriate.

learn more about sampling distribution,

https://brainly.com/question/26952915

#SPJ11

two long, parallel wires are separated by 4.45 cm and carry currents of 1.73 a and 3.57 a , respectively. find the magnitude of the magnetic force that acts on a 2.13 m length of either wire.

Answers

The magnitude of the magnetic force that acts on a 2.13 m length of two long, parallel wires are separated by 4.45 cm and carry currents of 1.73 A and 3.57 A, respectively is 3.64 × 10⁻⁴ N.

To calculate the magnetic force acting on either wire, we can use the formula:

F = (μ₀ × I₁ × I₂ × L) / (2 × π × d)

Where F is the magnetic force, μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), I₁ and I₂ are the currents in the wires, L is the length of the wire, and d is the distance between the wires.

Plugging in the given values, we have:

F = (4π × 10⁻⁷ T·m/A × 1.73 A × 3.57 A × 2.13 m) / (2 × π × 0.0445 m)

Calculating the magnetic force, we get:

F ≈ 3.64 × 10⁻⁴ N

So, the magnitude of the magnetic force that acts on a 2.13 m length of either wire is approximately 3.64 × 10⁻⁴ N.

Learn more about magnitude of the magnetic force: https://brainly.com/question/27548408

#SPJ11

Other Questions
Solve each equationtan([tex]\frac{x}{2}[/tex] - [tex]\frac{\pi }{2}[/tex]) = [tex]\sqrt{2}[/tex]Also what is the value of arctan([tex]\sqrt{2}[/tex])Give in the form x=[tex]\pi[/tex]+[tex]\pi[/tex]n We've figured out what part of the salt causes the flame to change color, so now let's measure the wavelengths created with four metals.Use the ruler under the "tools" icon in the upper right of the video player to measure the wavelengths of light released by each compound. According to the passage, what was the role of the west in the progressive movement How trauma affects children's emotional development? make this as an open ended question The height of an object is launched into the air given by the function h(t)=-5t^2+120t+17 where t is the time in seconds in order to make a recombinant vector, ligation of dna fragments would occur before growth of cells on a selective media. What's the outcome of compiling the following C++ Inheritance test code: class Base { protected: int m_protected; } class Pub: public Base { public: Pub() { m_protected 3; } } int main() { Base base; base.m_protected = 3; Pub pub; pub.m_protected 3; } O line 2 error: 'int Base::m_protected' is private line 3 error: illegal statement (i.e. base.m_protected inaccessible) All of the above Compiled Successfully What's the outcome of compiling the following C++ Inheritance test code: class Base { public: int m_protected; } class Pri: private Base { public: Pri() { m_protected 3; } } int main() { Base base; base.m_protected 3; Pri pri; pri.m_protected = 3; } O line 2 error: 'int Base::m_protected' is private O line 3 error: illegal statement (i.e. base.m_protected inaccessible) All of the above O Compiled Successfully What's the outcome of compiling the following C++ Inheritance test code: class Base { public: int m_protected; } class Pro: protected Base { public: Pro() { m_protected = 3; } } int main() { Base base; base.m_protected 3; Pro pro; pro.m_protected 3; } line 2 error: 'int Base::m_protected' is private O line 3 error: illegal statement (i.e. base.m_protected inaccessible) All of the above O Compiled Successfully Does point A on the graph represent a pair of possible values of m and w? Yes or no because 20 is or is not equal to 2.5 times 1. Identify the techniques of distorting or obscuring the detrimental consequences of one's actionsO people can disregard or ignore the consequences of their actionsO people can distort or misconstrue the consequences of their actionsO people can minimize the consequences of their behaviorO people can observe others receiving punishment for nonaggressive behaviorO people can live up to their personal standards of conduct by their aggressive behaviorO people can they enjoy inflicting injury on their victim the fact that a monopolistically competitive firm does not produce at the minimum atc can be viewed as the cost of generating part 2 a. economies of scale. b. homogeneous products. c. product differentiation and variety. d. all of the above. A transmission line is terminated in a normalized load impedance of ZLN = 2.0 j (1.5).a) Indicate this position on the Smith chart with an "A". Find the normalized load admittance and mark it with a "B". What is the normalized load admittance?b) Use the Smith chart to find the reflection coefficient at the load (both magnitude and phase). What percent of the incident power is reflected back from the load?Please Include Smith Chart with Solutions. A glass contains 320 cm of milk. The mass of the milk is 330 g. Calculate the density of the milk in kilograms per cubic metre (kg/m). Give your answer to the nearest integer. AP Environmental Science: Which of the following would be least likely to impact the price of electricity? - price of a barrel of oil - production of biodiesel - cost of a ton of coal - fire in a gas pipeline Please help!! I used law of sines and put it in calculator but the answer was weird... any help would be appreciated as this is due tomorrow!Thank you! Training increases employee commitment, which results in increased retention for an organization. True False Dry, compressed air at Tm.i = 75C, p = 10 atm, with a mass flow rate of 0.001 kg/s, enters a 30-mm-diameter, 5-m-long tube whose surface is at Ts = 25C.(a) Determine the thermal entry length, the mean temperature of the air at the tube outlet, the rate of heat transfer from the air to the tube wall, and the power required to flow the air through the tube. For these conditions the fully developed heat transfer coefficient is h = 3.58 W/m2 K.(b) In an effort to reduce the capital cost of the installation it is proposed to use a smaller, 28-mm-diameter tube. Determine the thermal entry length, the mean temperature of the air at the tube outlet, the heat transfer rate, and the required power for the smaller tube For laminar flow conditions it is known that the value of the fully developed heat transfer coefficient is inversely proportional to the tube diameter What impact did the great strike of 1877 have on the United States If the Federal Open Market Committee (FOMC) wants to _____ the short-term interest rate, it can _______ the U.S. Treasury securities from/to a commercial bank.Question 19 options:a) lower; buyb) lower; sellc) increase; buyd) increase; selle) only (a) and (d) of the above 1-propanol, 2-propanol, and methyl ethyl ether share the same molecular formula and so they are referred to as Write the correct form of the verbs.1. Iat 7 o'clock (get up)apples. (like)2. Ana3. Theyin the evening.(read)4. Ben to school at 8 o'clock. (go)Lis dog.5. H100