The nine fundamental solutions to the differential equation are:
[tex]e^{(-3+i)t}, e^{(-3-i)t}, e^t, te^t,[/tex] 1, t, t²/2!, t³/3!, [tex]t^4[/tex]/4!, [tex]e^{(-5+i)t}, ~and ~e^{(-5-i)t}[/tex]
We have,
The characteristic equation of the given differential equation is:
[tex](r^2 + 6r + 10)^2 \times r^2 (r - 1)^3 = 0[/tex]
We can find the fundamental solutions by looking at the roots of the characteristic equation.
The roots can be categorized as follows:
Roots of multiplicity 2 = -3 + i and -3 - i
Roots of multiplicity 2 = 1
Root of multiplicity 1 = 0
Root of multiplicity 2 = -5 + i and -5 - i
For each of these roots, we need to find the corresponding fundamental solution.
For the roots (-3 + i) and (-3 - i), the corresponding fundamental solutions are:
[tex]e^{(-3+i)t}~ and~ e^{(-3-i)t}[/tex]
For root 1, the corresponding fundamental solutions are:
[tex]e^t~and~te^t[/tex]
For the root 0, the corresponding fundamental solutions are:
1, t, t²/2!, t³/3!, ..., [tex]t^8[/tex]/8!
For the roots (-5 + i) and (-5 - i), the corresponding fundamental solutions are:
[tex]e^{(-5+i)t} ~and~e^{(-5-i)t}[/tex]
Therefore,
The nine fundamental solutions to the differential equation are:
[tex]e^{(-3+i)t}, e^{(-3-i)t}, e^t, te^t,[/tex] 1, t, t²/2!, t³/3!, [tex]t^4[/tex]/4!, [tex]e^{(-5+i)t}, ~and ~e^{(-5-i)t}[/tex]
Learn more about fundamental solution here:
https://brainly.com/question/30465018
#SPJ11
Rewrite the expression 4 to the power of negative 2 times 8 to the power of 0 times 5 to the power of 6 using only positive exponents.
Recall that any non-zero number raised to the power of 0 is equal to 1. Therefore, 8^0 = 1.
To rewrite the expression using only positive exponents, we can use the following rules of exponents:
a^(-n) = 1 / a^n
a^0 = 1
Using these rules, we can rewrite the expression as:
4^(-2) x 8^0 x 5^6
= (1/4^2) x 1 x 5^6
= 1/16 x 5^6
Therefore, the expression 4 to the power of negative 2 times 8 to the power of 0 times 5 to the power of 6, rewritten using only positive exponents, is 1/16 x 5^6.
s = {t −t2, t2 −t3, 1 −t t3 } for p3
The value of p3 for which the set s is linearly dependent is p3 = 1
How to find the value of p3?To find the value of p3 for which s is linearly dependent, we need to find values of p3 such that at least one of the vectors in the set s can be written as a linear combination of the other vectors in the set.
Let's start by setting up the linear combination equation:
c1(t − t^2) + c2(t^2 − t^3) + c3(1 − t t^3) = 0
where c1, c2, and c3 are constants that represent the coefficients of the linear combination.
Next, we can expand the terms and group them by powers of t:
(c1 − c2)t^2 + (-c1 + c2 + c3)t + (c3) = 0
For this equation to have a non-trivial solution (i.e., not all c1, c2, and c3 are zero), the determinant of the coefficient matrix must be zero:
det
|1 -1 0|
|-1 1 1|
|0 -1 p3|
= 0
Expanding the determinant, we get:
1(1-p3) - (-1)(-p3) + 0(1) = 0
Simplifying this equation, we get:
p3 - 1 = 0
Therefore, the value of p3 for which the set s is linearly dependent is p3 = 1
Learn more about vectors
brainly.com/question/29740341
#SPJ11
Prominent candy company Sweetums and fast food chain Paunch Burger decide to team up and release a new child-sized drink that blends candy bars into milkshakes. Leslie Knope is interested in how this new milkshake affects the weight of the citizens of her town (Pawnee, Indiana). She decides to take a random sample of 41 people from the town and asks the people in the sample to replace one beverage a day with this new candy bar milkshake. She measures their weights (in kilograms) before and after drinking this milkshake for a week. The summary of the data is below.
Variable Sample Mean Sample Standard Deviation
Weight (After - Before) 3.51 7.44
Use a significance level of α = 0.01 to test the hypothesis that the mean weight of citizens in Pawnee significantly increased after drinking the new child-sized candy bar milkshake from Sweetums and Paunch Burger for a week. Assume that the necessary conditions hold to carry out this test.
Select one:
t = 2.293, p-value < 0.01, reject the null hypothesis, and conclude that the mean weight of the citizens has increased.
t = 2.293, p-value < 0.01, reject the null hypothesis, and conclude that the mean weight of the citizens has changed.
t = 3.021, p-value > 0.01, do not reject the null hypothesis, conclude that the mean weight of the citizens has stayed the same.
t = 2.293, p-value > 0.01, do not reject the null hypothesis, conclude that the mean weight of the citizens has stayed the same.
t = 3.021, p-value < 0.01, reject the null hypothesis, and conclude that the mean weight of the citizens has increased.
To estimate the effect of the new child-sized candy bar milkshake, Leslie finds a 95% confidence interval for the mean difference in weight to be (1.163 , 5.857).
The correct answer is: t = 2.293, p-value < 0.01, reject the null hypothesis, and conclude that the mean weight of the citizens has increased.
To test the hypothesis, we need to use a one-sample t-test since we are comparing the mean weight difference of the sample to zero (no change). The sample mean weight difference is 3.51, and the sample standard deviation is 7.44. Since we do not know the population standard deviation, we use the t-distribution.
The null hypothesis is that the mean weight difference is equal to zero (no change), and the alternative hypothesis is that the mean weight difference is greater than zero (increase in weight).
Using a significance level of 0.01, the critical t-value for a one-tailed test with 40 degrees of freedom is 2.704. The calculated t-value is (3.51-0)/(7.44/sqrt(41)) = 2.293. The p-value associated with this t-value is less than 0.01 (found using a t-distribution table or calculator).
Since the p-value is less than the significance level, we reject the null hypothesis and conclude that the mean weight of the citizens of Pawnee significantly increased after drinking the new candy bar milkshake for a week. Therefore, the correct answer is: t = 2.293, p-value < 0.01, reject the null hypothesis, and conclude that the mean weight of the citizens has increased.
The 95% confidence interval for the mean difference in weight (1.163 , 5.857) also supports this conclusion since it does not include zero.
To learn more about significance level, refer below:
https://brainly.com/question/13947717
#SPJ11
What is the value of x?
The value of the missing angle x is 114 degrees
Calculating what is the value of x?From the question, we have the following parameters that can be used in our computation:
The kite
The value of x can be calculated using the following equation
x + 78 + 78 + 90 = 360 ---- sum of angles in a quadrilateral
When the like terms are evaluated, we have
x + 246 = 360
So, we have
x = 114
Hence, the value of x is 114 degrees
Read more about angles at
https://brainly.com/question/28293784
#SPJ1
the function f(x)=1/ln(3x) is guaranteed to have an absolute maximum and minimum on the interval [14,2]
There might be a typo in the interval you provided, as it should be written in ascending order, such as [a, b] with a < b. I'll assume you meant the interval [2, 14]. Now, let's analyze the function f(x) = 1/ln(3x) and find its absolute maximum and minimum on the interval [2, 14].
Step 1: Find the critical points
To find the critical points, we need to find the derivative of the function f(x) and set it equal to zero.
f(x) = 1/ln(3x)
Using the chain rule, we find the derivative:
f'(x) = -1/(ln(3x))^2 * (1/x)
Now, we need to find when f'(x) = 0 or when f'(x) is undefined. Since the derivative is a fraction, it is never equal to zero. However, the function is undefined when the denominator is zero. In this case, there's no value of x in the interval [2, 14] that makes the denominator zero.
Step 2: Analyze the endpoints
Since there are no critical points within the interval, we only need to check the values of the function at the endpoints.
f(2) = 1/ln(6)
f(14) = 1/ln(42)
Step 3: Determine the absolute maximum and minimum
Compare the values at the endpoints:
f(2) > f(14) as ln(6) < ln(42)
Thus, the function f(x) has an absolute maximum at x = 2 and an absolute minimum at x = 14 within the interval [2, 14].
To learn more about “critical points” refer to the https://brainly.com/question/7805334
#SPJ11
I NEED HELP ON THIS FAST
Answer:
[tex]a. \quad \dfrac{\boxed{1}}{\boxed{3}}} \cdot \dfrac{\boxed{1}}{\boxed{2}}} = \dfrac{\boxed{1}}{\boxed{6}}}\\\\\\\\b. \quad \dfrac{\boxed{1}}{\boxed{3}}} \cdot \dfrac{\boxed{1}}{\boxed{3}}} = \dfrac{\boxed{1}}{\boxed{9}}}\\\\\\\\c. \quad \dfrac{\boxed{21}}{\boxed{26}}} \cdot \dfrac{\boxed{5}}{\boxed{26}}} = \dfrac{\boxed{105}}{\boxed{676}}}\\[/tex]
Step-by-step explanation:
a.
When rolling a die(number cube) the sample space which is the set of all possible outcomes is {1, 2, 3, 4, 5, 6}
The probability of getting any single number on the face is the same = 1/6
For the first cube
P(3) = 1/6 and P(4) = 1/6
P(3 or 4) = P(3) + P(4) = 1/6 + 1/6 = 2/6 = 1/3
For the second cube
P(odd) = P(1 or 3 or 5) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2
So the combined probability that the first cube shows 3 or 4 and the second an odd is given by
1/3 · 1/2 = 1/6
b.
There are three coins a penny, dime and quarter
Probability of selecting a penny = number of pennies/total number of coins = 1/3
Since we are replacing the selected coin for the second draw, the probability of selecting a penny is just the same as before = 1/3
P(selecting 2 pennies with replacement) = 1/3 · 1/3 = 1/9
c.
There are a total of 26 letters in the alphabet
There are 5 vowels in the alphabet: A, E, I, O, U
Therefore there are 26 - 5 = 21 consonants
P(drawing a consonant) = 21/26
P(drawing a vowel) = 5/26
Since we are replacing the first drawn letter, these probabilities do not change with successive draws.
Therefore
P(consonant first draw and vowel second draw)
= P(consonant) · P(vowel)
= 21/26 · 5/26
=105/676
1. A sample of 100 service times at a call center has a sample mean of 8 minutes and a sample standard deviation of 7 minutes. Assume that the service times are independent and have a normal distribution (a) Give a 95% confidence interval for the mean service time. (b) Approximately how many service times we would have to collect to return a 95% confidence interval whose width is at most 20 seconds (1/3 minute)?
We would need to collect at least 268 service times to return a 95% confidence interval whose width is at most 20 seconds.
(a) We can use the formula for a confidence interval for the mean of a normal distribution with known standard deviation:
CI = X ± z*(σ/√n)
where X is the sample mean, σ is the population standard deviation (in this case, the sample standard deviation is used as an estimate of the population standard deviation since it is known), n is the sample size, and z is the critical value from the standard normal distribution for the desired level of confidence.
For a 95% confidence interval, the critical value is z = 1.96. Plugging in the values, we get:
CI = 8 ± 1.96*(7/√100) = 8 ± 1.372
Therefore, a 95% confidence interval for the mean service time is (6.63, 9.37) minutes.
(b) To find the sample size required to return a 95% confidence interval whose width is at most 20 seconds, we can use the formula for the margin of error:
ME = z*(σ/√n)
where ME is the maximum allowed margin of error (which is 1/3 minute or 0.33 minutes in this case).
Solving for n, we get:
n = (z*σ/ME)^2
For a 95% confidence interval, the critical value is z = 1.96. Plugging in the values, we get:
n = (1.96*7/0.33)^2 ≈ 267.17
Therefore, we would need to collect at least 268 service times to return a 95% confidence interval whose width is at most 20 seconds.
To learn more about confidence interval visit: https://brainly.com/question/24131141
#SPJ11
find the arc length from (0, 4) clockwise to (3, 7 ) along the circle x^2 + y^2 = 16. (round your answer to four decimal places.)
The arc length is approximately 20.5744 units.
How to find the arc length from (0, 4) clockwise to (3, 7) along the circle?To find the arc length from (0, 4) clockwise to (3, 7) along the circle[tex]x^2 + y^2 = 16.[/tex]
We need to first find the angle between the positive x-axis and the line connecting the center of the circle to the point (3, 7), since the arc length is a fraction of the circumference of the circle.
The center of the circle is at (0, 0), and the line connecting (0, 0) to (3, 7) has a slope of (7-0)/(3-0) = 7/3.
Therefore, the angle between the positive x-axis and this line is given by:
θ = arctan(7/3) ≈ 1.1659045 radians
Since we are traveling clockwise from (0, 4) to (3, 7), we are traversing an angle of 2π - θ, which is approximately 5.1766375 radians.
The circumference of the circle is given by 2πr, where r is the radius of the circle. In this case, the radius is 4, so the circumference is 8π.
The fraction of the circumference that we travel along is the ratio of the angle we traverse to the total angle around the circle, which is 2π.
Therefore, the arc length is:
(5.1766375 radians / 2π) × 8π = 20.5744
Rounding to four decimal places, the arc length is approximately 20.5744 units.
Learn more about arc length of a circular segment.
brainly.com/question/26854963
#SPJ11
For the demand functionq = d(x) = 800 - x; find the following. a) The elasticity b) The elasticity at x = 3
a) The elasticity of the demand function q = 800 - x is -x / (800 - x)².
b) At x = 3, the elasticity of the demand function q = 800 - x is approximately -0.0000465.
How to find the elasticity of the function?(a) To find the elasticity of the demand function q = 800 - x, we first need to calculate the derivative of q with respect to x:
dq/dx = -1
Next, we can use the formula for elasticity:
E = (dq/dx) * (x/q)
Substituting the values of dq/dx and q, we get:
E = (-1) * (x/(800-x))
Simplifying this expression, we get:
E = -x / (800 - x)²
How to find the elasticity of the function at x = 3?(b) To find the elasticity at x = 3, we substitute x = 3 into the expression we derived for E:
E = -(3) / (800 - 3)² = -0.0000465
Therefore, the elasticity at x = 3 is approximately -0.0000465.
Note that since the elasticity is negative, this indicates that the demand is inelastic, meaning that a change in price will have a relatively small effect on the quantity demanded.
Learn more about Elasticity
brainly.com/question/28790459
#SPJ11
find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. y= x², y = 0, x = 1, about the y-axis
The volume of the solid obtained by rotating the region bounded by the curves y = x², y = 0, and x = 1 about the y-axis is π/3 cubic units.
How to find the volume of the solid obtained by rotating the region?To find the volume of the solid obtained by rotating the region bounded by the curves y = x², y = 0, and x = 1 about the y-axis, we can use the disk method.
The idea behind the disk method is to slice the solid into thin disks perpendicular to the axis of rotation and sum up their volumes. The volume of each disk is the product of its cross-sectional area and its thickness.
In this case, we are rotating about the y-axis, so the cross-sectional area of each disk will be a circle with radius x and area πx². The thickness of each disk will be dx, which represents an infinitesimal slice of the x-axis.
Thus, the volume of each disk is given by:
dV = πx² dx
To find the total volume of the solid, we need to integrate this expression over the range of x from 0 to 1:
V = ∫₀¹ πx² dx
Integrating this expression gives:
V = π/3
Therefore, the volume of the solid obtained by rotating the region bounded by the curves y = x², y = 0, and x = 1 about the y-axis is π/3 cubic units.
Learn more about disk method
brainly.com/question/28184352
#SPJ11
Question: “use calculator to find the measure of angle A round to the nearest tenth”
(please show work if you can)
Answer:
36.9 degrees
Step-by-step explanation:
Cos(x) = adjacent/hypoteneuse
cos(x) = 12/15
cos(x) = 4/5
x = cos^-1(4/5)
= 36.869898 degrees
= 36.9 degrees
Hope this helps and be sure to mark this as brainliest! :)
Determine whether the following equation is separable. If so, solve the given initial value problem. y'(t) 4y e. y(0) = 1 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The equation is separable. The solution to the initial value problem is y(t) e4e (Type an exact answer in terms of e.) B. The equation is not separable.
The given differential equation, y'(t) = 4y e, is separable. and Option A. The solution to the initial value problem is y(t) = e^(4e) is the right answer for the given question.
To determine if the equation is separable, we need to check if we can write the equation in form f(y)dy = g(t)dt. If we rearrange the equation, we get y'(t) = 4y(t)e.
We can write this as y'(t)/y(t) = 4e. Now we can see that we have separated the variables y and t on either side of the equation, so the equation is separable.
To solve the equation, we can integrate both sides with respect to t and y. On the left side, we get ln|y(t)|, and on the right side, we get 4et + C, where C is the constant of integration. Therefore, we have ln|y(t)| = 4et + C.
To find the value of C, we use the initial condition y(0) = 1. Substituting t = 0 and y(t) = 1 into the equation, we get,
ln|1| = 4e(0) + C, so C = ln|1| = 0.
Therefore, Option A. The equation is seperable. The solution to the initial value problem is y(t)=e^4e is the correct answer.
Learn more about integration:
https://brainly.com/question/22008756
#SPJ11
The weights of all babies born at a hospital have a mean of 7.3 pounds and a standard deviation of0.65 pounds. Find the probability that if 36 babies are born in this hospital their weights will be between7.4 and 6.5 pounds.a) What are the values of the parameters: μ.......... σb) What are the values of the statistics: μx.............σx(or s)c) Find the requested probabili
The probability that the weight of 36 babies born at the hospital will be between 7.4 and 6.5 pounds is approximately 0.9089 or 90.89%.
a) The values of the parameters are:
Mean (μ) = 7.3 pounds
Standard deviation (σ) = 0.65 pounds
b) As we don't have the sample data, we can't calculate the sample mean (μx) and sample standard deviation (σx or s).
c) To find the probability that the weight of 36 babies will be between 7.4 and 6.5 pounds, we need to use the central limit theorem as the sample size is large enough (n=36).
First, we need to standardize the values using the formula:
z = (x - μ) / (σ / sqrt(n))
where x is the value we want to find the probability for, μ and σ are the population mean and standard deviation respectively, and n is the sample size.
For 7.4 pounds:
z1 = (7.4 - 7.3) / (0.65 / sqrt(36)) = 1.38
For 6.5 pounds:
z2 = (6.5 - 7.3) / (0.65 / sqrt(36)) = -2.46
Next, we need to find the probability of z-values using a standard normal distribution table or calculator.
Using the standard normal distribution table, the probability of z1 = 1.38 is 0.9157, and the probability of z2 = -2.46 is 0.0068.
Finally, we can find the probability that the weight of 36 babies will be between 7.4 and 6.5 pounds by subtracting the probability of z2 from the probability of z1:
P(6.5 ≤ x ≤ 7.4) = P(z2 ≤ z ≤ z1) = P(z ≤ 1.38) - P(z ≤ -2.46) = 0.9157 - 0.0068 = 0.9089
Therefore, the probability that the weight of 36 babies born at the hospital will be between 7.4 and 6.5 pounds is approximately 0.9089 or 90.89%.
To learn more about parameters visit:
https://brainly.com/question/30757464
#SPJ11
Find the Value of X pls!!!!
Here the length of VT is equal to (x-1) which is equal to 6 and SC is equal to (2x-17) which is equal to 3.
So x=7, VT=6 and SC=3.
Explain length
Length is a fundamental physical quantity used to measure the size of an object or the distance between two points. It is expressed in units such as meters, centimetres, or feet and is used in various fields such as mathematics and physics. The length of a straight line is calculated by finding the distance between its endpoints, while the length of two-dimensional shapes such as rectangles is measured by their perimeter.
According to the given information
We can use the following steps to find x:
Find the length of ST using Pythagoras' theorem as follows:
SV = RV + RS = RV + RT = 6 + (2x - 17) = 2x - 11
UT = UV + VT = 12 + (x - 1) = x + 11
ST² = SV² + UT²
(2x - 11)² + (x + 11)² = ST²
Find the length of VT using Pythagoras' theorem as follows:
TV² = UT² - UV²
TV² = (x + 11)² - 12²
Substitute TV² into the equation in step 1 and solve for x.
After solving for x, we get x=7.
Therefore, VT is equal to (x-1) which is equal to 6 and SC is equal to (2x-17) which is equal to 3.
So x=7, VT=6 and SC=3.
To know more about length visit
brainly.com/question/8552546
#SPJ1
The intercepts of a straight line at the axes are equal in magnitude but opposite in sign. Given that the line passes through the point (4, 5), find the equation of the line.
The line passes through the point (4, 5), has its equation of the line to be y = 5/4x
Finding the equation of the line.From the question, we have the following parameters that can be used in our computation:
Point, (x, y) = (4, 5)
The equation of a straight line is represented as
y = mx + c
Assuming c = 0,
So, we have
y = mx
This means taht
5 = 4m
So, we have
m = 5/4
Recall that
y = mx
So, we have
y = 5/4x
Hence, the equation of the line is y = 5/4x
Read more about linear relation at
https://brainly.com/question/30318449
#SPJ1
Evaluate 7P6
Help please and thanks
Answer: 5,040
Step-by-step explanation: The value of 7P6 is 5,040. To evaluate this, you can use the formula for permutations: nPr = n! / (n - r)!, where n is the total number of items and r is the number of items being selected. In this case, n = 7 and r = 6, so 7P6 = 7! / (7 - 6)! = 7! / 1! = 5,040.
Let's count ternary digit strings, that is, strings in which each digit can be 0, 1, or 2.
a. How many ternary digit strings contain exactly n digits?
b. How many ternary digit strings contain exactly n digits and n 2's.
c. How many ternary digit strings contain exactly n digits and n - 1 2's.
a) There are 3ⁿ ternary digit strings with exactly n digits.
b) There is only 1 string with n digits and n 2's.
c) There are n ternary digit strings with n digits and n-1 2's.
a) For each digit in a ternary digit string, there are 3 possible values (0, 1, or 2). With n digits, you have 3 choices for each digit, giving 3ⁿ total possible strings.
b) If a string has n digits and all are 2's, there's only one possible string, which is '222...2' (with n 2's).
c) If a string has n digits and n-1 of them are 2's, there's one remaining digit that can be 0 or 1. There are n positions this non-2 digit can be in, resulting in n possible strings.
To know more about digit strings click on below link:
https://brainly.com/question/14470547#
#SPJ11
GO
A science test, which is worth 100 points, consists of 24 questions. Each question is worth either 3 points or 5
points. If x is the number of 3-point questions and y is the number of 5-point questions, the system shown
represents this situation.
x+y= 24
3x + 5y = 100
What does the solution of this system indicate about the questions on the test?
The test contains 4 three-point questions and 20 five-point questions.
The test contains 10 three-point questions and 14 five-point questions.
The test contains 14 three-point questions and 10 five-point questions.
The test contains 20 three-point questions and 8 five-point questions.
Mark this and return
Save and Exit
Next
Submit
Answer:
B
Step-by-step explanation:
I put the equations into math-way and it solved the system of equations. X=10 and Y=14.
10 three-point questions and 14 five-point questions
Let f be a function with third derivative f (x) = (4x + 1) 7. What is the coefficient of (x - 2)^4 in the fourth-degree Taylor polynomial for f about x = 2 ?
a. ¼
b. 3/4. c. 9/2. d. 18
We can use the Taylor series formula to find the fourth-degree Taylor polynomial for f about x = 2. The answer is d. 18
[tex]f(2) = f(2) = 405[/tex]
[tex]f'(2) = 29[/tex]
[tex]f''(2) = 28[/tex]
[tex]f'''(2) = 168[/tex]
The fourth-degree Taylor polynomial is:
P4(x) [tex]= f(2) + f'(2)(x-2) + (f''(2)/2!)(x-2)^2 + (f'''(2)/3!)(x-2)^3 + (f''''(c)/4!)(x-2)x^{2}[/tex]^4
where c is some number between 2 and x.
Using the given third derivative, we can find the fourth derivative:
[tex]f''''(x) = (4x + 1) ^6 * 4[/tex]
Plugging in x = c, we have:[tex]f''''(c) = (4c + 1) ^6 * 4[/tex]
Therefore, the coefficient of [tex](x-2)^4[/tex] in the fourth-degree Taylor polynomial is:[tex](f''''(c)/4!) = [(4c + 1) ^6 * 4] / 24[/tex]
We need to evaluate this at c = 2:[tex][(4c + 1) ^6 * 4] / 24 = [(4*2 + 1) ^6 * 4] / 24 = 18[/tex]
To learn more about Taylor polynomial, visit here
https://brainly.com/question/31419648
#SPJ4
consider the following data set. 37 64 28 46 72 24 11 33 a) determine the 20th percentile. b) determine the 40th percentile. c) determine the 70th percentile.
a) The 20th percentile is 21.4.
b) The 40th percentile is 31.
c) The 70th percentile is 66.4.
To determine the percentile, we need to first arrange the data in order from smallest to largest
11, 24, 28, 33, 37, 46, 64, 72
a) To find the 20th percentile, we need to first determine the rank of this percentile.
The formula for rank is given by:
Rank = (percentile/100) x (number of observations + 1)
So for the 20th percentile, we have:
Rank = (20/100) x (8+1) = 1.8
This tells us that the 20th percentile lies between the 1st and 2nd observations. To find the actual value, we can use linear interpolation
Value = 11 + 0.8 x (24 - 11) = 11 + 0.8 x 13 = 21.4
Therefore, the 20th percentile is 21.4.
b) To find the 40th percentile, we use the same formula:
Rank = (40/100) x (8+1) = 3.6
This tells us that the 40th percentile lies between the 3rd and 4th observations. Using linear interpolation:
Value = 28 + 0.6 x (33 - 28) = 28 + 0.6 x 5 = 31
Therefore, the 40th percentile is 31.
c) To find the 70th percentile, we use the same formula:
Rank = (70/100) x (8+1) = 6.3
This tells us that the 70th percentile lies between the 6th and 7th observations. Using linear interpolation:
Value = 64 + 0.3 x (72 - 64) = 64 + 0.3 x 8 = 66.4
Therefore, the 70th percentile is 66.4.
Learn more about percentile here
brainly.com/question/1594020
#SPJ4
A sum of money will be doubled if it is deposited at a simple interest rate of r% p.a. for t years. What is the percentage change in its interest rate if the same amount of money will be increased by 25% in t/2 years time?
The percentage change in the interest rate is -80%. This means that the interest rate needs to be reduced by 80% to achieve an increase in the amount of money by 25% in t/2 years time.
What is simple interest?The interest on a loan or principal sum can be easily calculated using simple interest. Simple interest is a notion that is employed across a wide range of industries, including banking, finance, automobiles, and more.
Let the original sum of money be P.
According to the question, if P is deposited at a simple interest rate of r% p.a. for t years, it will be doubled. This means that the interest earned on P after t years is P, i.e.,
I = P
The formula for simple interest is I = (P * r * t) / 100. Substituting I = P, we get:
P = (P * r * t) / 100
Simplifying, we get:
r = 100 / t
Now, the question states that if the same amount of money (P) is increased by 25% in t/2 years time, the new amount becomes:
P' = P + (0.25P) = 1.25P
Let the new rate of interest be r'.
The formula for simple interest is I' = (P' * r' * t/2) / 100. Substituting P' = 1.25P, we get:
I' = (1.25P * r' * t/2) / 100
The interest earned on P' after t/2 years is 1.25P - P = 0.25P. Therefore, we have:
I' = 0.25P
Substituting the value of I' in the above equation, we get:
0.25P = (1.25P * r' * t/2) / 100
Simplifying, we get:
r' = 20 / t
The percentage change in the interest rate is given by:
((r' - r) / r) * 100%
Substituting the values of r and r', we get:
((20/t - 100/t) / (100/t)) * 100%
= -80%
Therefore, the percentage change in the interest rate is -80%. This means that the interest rate needs to be reduced by 80% to achieve an increase in the amount of money by 25% in t/2 years time.
Learn more about simple interest on:
https://brainly.com/question/1173061
#SPJ9
5
Find the exact x value for each diagram below. (Leave your answer in a radical form)
a.)
b.)
c.)
The value of x in each case:
(a) x = 7 units
(b) x = 5√2 units
(c) x = 4√3 units
In this question we use some basic formula of trigonometry.
(a) Consider sine of angle 30 degrees
sin(30) = opposite side/hypotenuse
1/2 = x/14
x = 14/2
x = 7 units
(b) Consider cosine of angle 45 dgrees
cos(45) = adjacent side/ hypotenuse
1/√2 = 5/x
x = 5√2 units
(c) Consider tangent of angle 60 degrees.
tan(60) = opposite side/ hypotenuse
√3 = x/4
x = 4 × √3
x = 4√3 units
Learn more about the trigonometry here:
https://brainly.com/question/17081568
#SPJ1
Given the following declarations and assignments, what do these expressions evaluate to?
int a1[10] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
int *p1, *p2;
p1 = a1+3;
p2 = &a1[2];
(a) *(a1+4) (b) a1[3] (c) *p1 (d) *(p1+5) (e) p1[-2]
(f) *(a1+2) (g) a1[6] (h) *p2 (i) *(p2+3) (j) p2[-1]
The element at the memory location that is 1 integer behind the memory location pointed to by p2.
(a) *(a1+4) - This expression evaluates to 5. It is equivalent to a1[4].
(b) a1[3] - This expression evaluates to 6, which is the value of the element at index 3 in the array a1.
(c) *p1 - This expression evaluates to 6, which is the value of the element at the memory location pointed to by p1.
(d) *(p1+5) - This expression evaluates to 1, which is the value of the element at the memory location that is 5 integers ahead of the memory location pointed to by p1.
(e) p1[-2] - This expression evaluates to 7, which is the value of the element at the memory location that is 2 integers behind the memory location pointed to by p1.
(f) *(a1+2) - This expression evaluates to 7, which is the value of the element at index 2 in the array a1.
(g) a1[6] - This expression evaluates to 3, which is the value of the element at index 6 in the array a1.
(h) *p2 - This expression evaluates to 7, which is the value of the element at the memory location pointed to by p2.
(i) *(p2+3) - This expression evaluates to 5, which is the value of the element at the memory location that is 3 integers ahead of the memory location pointed to by p2.
(j) p2[-1] - This expression evaluates to 8, which is the value of the element at the memory location that is 1 integer behind the memory location pointed to by p2.
To learn more about expression visit:
https://brainly.com/question/14083225
#SPJ11
Consider the following table.
Weekly hours worked Probability
1-30 (average=23) 0.08
31-40 (average=36) 0.10
41-50 (average=43) 0.74
51 and over (average=54) 0.08
Find the mean of this variable.
O 41.6
O 39.0
O 31.8
O 25.2
The mean of the variable given in the question is Option A. 41.6.
To find the mean of the variable, we need to multiply each range of weekly hours worked by its corresponding probability, then sum all of the results.
The calculations are as follows:
(23 * 0.08) + (36 * 0.10) + (43 * 0.74) + (54 * 0.08) = 41.6
Therefore, the mean of the variable is Option A. 41.6.
In this case, the probabilities for each range of weekly hours worked to represent the likelihood of an employee working within that range. For example, the probability of an employee working between 41-50 hours is 0.74, which is quite high compared to the other ranges. As a result, this range has a larger impact on the overall mean of the variable.
It is important to calculate the mean of a variable as it helps in understanding the central tendency of a distribution. In this case, the mean helps us to understand the average number of weekly hours worked by employees, which can be useful in making decisions related to employee scheduling, workload management, and compensation.
Learn more about probability:
https://brainly.com/question/27342429
#SPJ11
Simplify 5c(3c^2)^3
a. ) 45c^6
b. ) 135^6
c. ) 45c^7
d. ) 135c^7
Peter needs to borrow $10,000 to repair his roof. He will take out a 317-loan on April 15th at 4% interest from the bank. He will make a payment of $3,500 on October 12th and a payment of $2,500 on January 11th.
c) Calculate the interest due on January 11th and the balance of the loan after the January 11th payment.
d) Calculate the final payment (interest + principal) Peter must pay on the due date.
c) The interest due on January 11th is $66 and the balance of the loan after the January 11th payment is $4,263.
d) The final payment that Peter must make on the due date (interest and principal) is $4,285.
How the interest, balances, and final payments are computed:The interest due, balances, and final payments are based on compound interest.
The compound interest system charges interest on both the accumulated interest and principal (balance).
April 15th to October 12th = 180 days
October 13th to January 11th = 90 days
January 12th to February 28th = 47 days
Total number of days for the loan = 317 days
Days in the year = 365 days
Principal = $10,000
Loan period = 317 days
Interest rate = 4%
October 12th Payment:Balance on October 12th = $10,197 ($10,000 + $10,000 x 4% x 180/365)
Payment on October 12th = $3,500
Balance from October 13th = $6,697 ($10,197 - $3,500)
January 11th Payment:Balance on January 11th = $6,763 ($6,697 + $66)
Interest = $66 ($6,697 x 4% x 90/365)
Payment on January 11th = $2,500
Balance from January 12th = $4,263 ($6,763 - $2,500)
Final Payment on February 28th = $4,285 ($4,263 + $4,263 x 4% x 47/365)
Learn more about compound interest at https://brainly.com/question/28020457.
#SPJ1
Choose ALL answers that describe the quadrilateral
O
P
Q
R
OPQR if
O
P
‾
∥
Q
R
‾
OP
∥
QR
,
P
Q
‾
∥
R
O
‾
PQ
∥
RO
,
O
Q
=
P
R
OQ=PR, and diagonals are perpendicular:
O
Q
‾
⊥
P
R
‾
OQ
⊥
PR
.
The polygon is a parallelogram and rectangle
How to solveThe polygon is a parallelogram , quadrilateral and a rectangle
The sum of angles of a parallelogram is 360°
The four types are parallelograms, squares, rectangles, and rhombuses
Properties of ParallelogramOpposite sides are parallel
Opposite sides are congruent
Opposite angles are congruent.
Same-Side interior angles (consecutive angles) are supplementary
Each diagonal of a parallelogram separates it into two congruent triangles
The diagonals of a parallelogram bisect each other
Given data ,
The polygon is represented as OPQR
Now , the number of sides of the polygon = 4
So , it is a quadrilateral
Now , the measure of sides of the quadrilateral are
OP = 20 units
PQ = 40 units
QR = 20 units
RO = 40 units
So, it has 2 congruent sides and they are parallel in shape
So, it is a parallelogram
Now, the 2 opposite pairs of sides of the parallelogram are equal
So, it is a rectangle
Hence, the polygon is a parallelogram and rectangle
Read more about parallelogram here:
https://brainly.com/question/3050890
#SPJ1
HELPPP DUE IN A HOUR!!+
The system of linear functions for the graph below is given as follows:
y = -0.5x + 1.y = -4x - 6.How to define a linear function?The slope-intercept representation of a linear function is given by the equation presented as follows:
y = mx + b
The coefficients of the function and their meaning are described as follows:
m is the slope of the function, representing the change in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, which is the initial value of the function, i.e., the numeric value of the function when the input variable x assumes a value of 0. On a graph, it is the value of y when the graph of the function crosses the y-axis.For the first line, we have that:
The intercept is of b = 1, as when x = 0, y = 1.The slope is of m = -0.5, as when x increases by 2, y decays by 1.Hence the equation is:
y = -0.5x + 1.
For the second line, we have that:
The intercept is of b = -6, as when x = 0, y = -6.The slope is of m = -4, as when x increases by 2, y decays by 8.Hence the equation is:
y = -4x - 6.
More can be learned about linear functions at https://brainly.com/question/24808124
#SPJ1
Complete the table for y<x+2
Answer:
y= 0 , 2 , 4
Step-by-step explanation:
y=x+2
substitute the value for x
y=-2+2
y=0
y=0+2
y=2
y=2+2
y=4
Circle H is shown
What is the measure of angle RWY?
The measure of <RWY is 60 degree.
We have,
YMX = (YM) + (MX)
YMX = (4x-49) + (3x+4)
(YMX) = 7x - 45
Now, (YMX - TN) /2 = <TKN
(7x- 45 - 43)/2 = <TKN
5x -77 = 7x - 88 /2
10x - 154 = 7x-88
x=22
Now, (RY) = 6x-82 = 50
and, (MX) = 3x+4 = 70
So, the measure of <RWY
= (50+70)/2 = .60
Learn more about Arc here:
https://brainly.com/question/18741430
#SPJ1