Answer:
$18019.37
Step-by-step explanation:
[tex]A = 12,385(1 + \frac{0.075}{365})^{365(5)}\\[/tex]
≈ $18019.37
Help pls
Two digits of the 6-digit number X = 345 * 8* are missing. Fill in the missing digits
so that the number obtained is the smallest possible number that is divisible by 45.
Find X.
The smallest possible number that is divisible by 45 when the blanked place of the number is filled is 345285.
What is the divisible rule of 9 and 5?The divisible rule of 9 and 5 are:
Divisible rule of 9- When the addition of all number is divisible by 9, then that number also divisible by 9.Divisible rule of 5- When a number has a digit 0 or 5 in the last of it, then that number also divisible by 5.Two digits of the 6-digit number are missing.
[tex]X = 345 * 8*[/tex]
The smallest possible number from this is divisible by 45. The factors of 45 are 9 and 5.
[tex]45=9\times5[/tex]
Thus, the 6-digit number which is divisible by 45, must be divisible by 9 and 5.
To be divisible with 5, the number has 0 or 5 in last. So the numbers can be,
[tex]X = 345 * 85\\X=345 * 80[/tex]
For first number, when the blank is filled with number 2 to make sum 9 and for second the blank number should be 7. Thus, the numbers,
[tex]X = 345 285\\X=3457 80[/tex]
Thus, the smallest possible number that is divisible by 45 when the blanked place of the number is filled is 345285.
Learn more about the smallest common factor here;
https://brainly.com/question/16054958
#SPJ1
please solve this problem using the pythagorean theorem, and give me the right answer and I will give you brainliest. :)
Answer:
6.1 km
Step-by-step explanation:
The Pythagorean theorem tells you the relationship between the lengths of the sides of a right triangle.
c² = a² +b² . . . . a, b are the short sides; c is the hypotenuse
__
The geometry of this problem can be modeled by a right triangle with legs 3.7 km and 4.9 km. The distance of interest is the hypotenuse of the triangle.
c² = 3.7² +4.9² = 13.69 +24.01 = 37.70
c = √37.70 ≈ 6.1
The straight-line distance is about 6.1 km.
Mean = 5 13+14+15+19+19 =
Answer:
14.167
Step-by-step explanation:
assuming you meant 5+13
Is this true or false?
Answer:
true
Step-by-step explanation:
yas
The function is defined over the interval [2, 5]. if the interval is divided into equal parts, what is the value of the function at the right endpoint of the th rectangle?
The value of the function at the right endpoint of the rectangle is 5 +6k/n.
What is the endpoint about?In the question above;
Th width of the interval is said to be (5 -2) = 3.
So, the width of one of n parts of it = 3/n
To solve for the differences that exist between the left end point of the interval and the value of x at the right end of the k-th rectangle, one can say that:
k·(3/n) = 3k/n
Note that the value of x at shows the point of difference added to the interval's left end and thus it will be: 2 + 3k/n
Therefore, the value of the function for the value of x will be:
f(2 +3k/n) = 2(2 +3k/n) +1 = (4 +6k/n) +1
= 5 +6k/n
Learn more about function from
https://brainly.com/question/25638609
#SPJ4
what’s -12/2 simplified
Answer:
= -6
Step-by-step explanation:
-12/2
= -6
How to find the arc length?
The formula is given by
L=Ø/360°×2πrOr
L=Ø/180°×πrWhere
Ø is the angle of arcL is Arc lengthr is radius of circlePlease help me:( The question is the line y=mx+c passes through the point (3,4) and is perpendicular to the line y+2x=4. Find m and c.
Answer:
m = [tex]\frac{1}{2}[/tex] , c = [tex]\frac{5}{2}[/tex]
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
given
y + 2x = 4 ( subtract 2x from both sides )
y = - 2x + 4 ← in slope- intercept form
with slope m = - 2
given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{-2}[/tex] = [tex]\frac{1}{2}[/tex] , then
y = [tex]\frac{1}{2}[/tex] x + c ← is the partial equation
to find c substitute (3, 4 ) into the partial equation
4 = [tex]\frac{3}{2}[/tex] + c ⇒ c = 4 - [tex]\frac{3}{2}[/tex] = [tex]\frac{5}{2}[/tex]
y = [tex]\frac{1}{2}[/tex] x + [tex]\frac{5}{2}[/tex] ← equation of line
with m = [tex]\frac{1}{2}[/tex] and c = [tex]\frac{5}{2}[/tex]
.
In a system of nonlinear inequalities, where and what is the feasible region?
Answer:
the region of the graph where the shaded regions of the graph of each inequality overlap, or where the regions intersect
Step-by-step explanation:
if jane has 3 pars and take 3 pars how many pars would she had left
Answer:
0 pars
Step-by-step explanation:
3-3=0
...........look at the image below lol
Answer:
1.7.
Step-by-step explanation:
2x^3 + 9x^2 - 2x + 8 = 40
Substituting values for x in the range 1 to 2:
when x = (1.1):
f(1.1) = 2(1.1)^3 + 9(1.1)^2 - 2(1.1) + 8 = 19.32.
x = 1.3:
f(1.3) = 25.004
F(1.5) = 32
F(1.6) = 36.032
F(1.7) = 40.436 which is just greater than 40.
So the root is between 1.6 and 1.7.
f(1.65) = 38.19
Therefore the root is > 1.65 and < 1.7
and to 1 DP it is 1.7.
Which inequality is equivalent to −x<12?
Answer:
bottom left
Step-by-step explanation:
when divideing/mult by neg number, sign flips.
Distribute: 2(3x + 4)
Answer:
6x+8
Step-by-step explanation:
2(3x+4)= 2(3x) + 2(4) = 6x+8
Select all ordered pairs that correspond to input-output pairs for the function y = 3x - 2.
(-2, 0)
(-1, -5)
(0, -2)
(2, 3)
(-3, -11)
Answer:
(-1, -5)
(0, -2)
(-3, -11)
Step-by-step explanation:
y = 3x - 2.
→ 3×(-2)-2=-8 ≠0 ⇒(-2, 0) doesn’t correspond to input-output pairs for the function
→ 3×(-1)-2=-5 ⇒(-1, -5) corresponds to input-output pairs for the function
→ 3×(0)-2=-2 ⇒(0, -2) corresponds to input-output pairs for the function
→ 3×(2)-2=4≠3 ⇒(2, 3) doesn’t correspond to input-output pairs for the function
→ 3×(-3)-2=-11 ⇒(-3, -11) corresponds to input-output pairs for the function
Question
Which systems of equations have infinitely many solutions?
Select each correct system.
Answer: F
Step-by-step explanation:
This does not have infinitely many solutions (adding the equations, we get a fixed value of x)This has no solutions (the left hand sides are the same but the right hand sides have different values)This has one solution (the first equation givess a fixed value for x)This has no solutions (same reason as 2)This has one solution (same reason as 3, just the second equation instead of the first)This has infinitely many solutions (multiplying both sides of the top equation by -2 gives the bottom equation).please help me I will give brainliest
Answer:
The mass of salt!
Step-by-step explanation:
The responding variable is the part of an experiment that a scientists measures and observes closely for a change or a response
what is the simplified form of this expression (-3x^2+4x)+(2x^2-x-11)
Answer:
SolutioN :
[tex] \bf \: \star ( - 3x^{2} + 4x) + (2 {x}^{2} - x - 11)[/tex]
[tex] \longrightarrow \bf \: - 3 {x}^{2} + 4x + 2 {x}^{2} - x - 11[/tex]
[tex] \longrightarrow \bf \: - 3 {x}^{2} + 2 {x}^{2} + 4x - x - 11[/tex]
[tex] \longrightarrow \boxed{\bf \: - {x}^{2} + 3x - 11}[/tex]
-------------HappY Learning <3 ----------
Given expression:
[tex](-3x^2+4x)+(2x^2-x-11)[/tex]
To simplify the expression, it is needed to open the parentheses.
[tex]\implies (-3x^2+4x)+(2x^2-x-11)[/tex]
[tex]\implies -3x^2+4x+2x^2-x-11[/tex]
To further simplify the expression, let us combine like terms.
[tex]\implies -3x^2+4x+2x^2-x-11[/tex]
[tex]\implies x^{2} (-3 + 2)+x(4-1)-11[/tex]
Now, simplify the expression as needed.
[tex]\implies x^{2} (-3 + 2)+x(4-1)-11[/tex]
[tex]\implies x^{2} (-1)+x(3)-11[/tex]
Finally, open the parentheses to get the simplified form
[tex]\implies x^{2} (-1)+x(3)-11[/tex]
[tex]\implies \boxed{\bold{-x^{2} +3x-11}}[/tex]
[tex]\text{Therefore, the simplified expression is} \ \boxed{-x^{2} +3x-11}[/tex]
Zendaya has $700 to spend at a bicycle store for some new gear and biking outfits. assume all prices listed include tax. she buys a new bicycle for $242.33. she buys 3 bicycle reflectors for $7.17 each and a pair of bike gloves for $33.68. she plans to spend some or all of the money she has left to buy new biking outfits for $77.40 each. write and solve an inequality which can be used to determine xx, the number of outfits zendaya can purchase while staying within her budget.
Answer:
she could buy 5 outfits
Step-by-step explanation:
you multiply 7.17 by 3 = 21.51
700 - 21.51 = 678.49
678.49 - 242.33 = 436.16
436.16 - 33.68 = 402.48
402.48 divided by 77.40 = 5
simplify √(x^2-10x+25) if -5≤x<5
[tex]\\ \rm\Rrightarrow \sqrt{x²-10x+25}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt{x²-5x-5x+25}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt{x(x-5)-5(x-5)}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt{(x-5)(x-5)}[/tex]
[tex]\\ \rm\Rrightarrow \sqrt{(x-5)^2}[/tex]
[tex]\\ \rm\Rrightarrow\pm (x-5)[/tex]
Solution set(for x-5)
{-10,-9,-8,-7,-4,-3,-2,-1,0}for 5-x
{0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10}Answer:
First, simplify the expression under the square root sign by factoring:
[tex]\implies x^2-10x+25[/tex]
[tex]\implies x^2-5x-5x+25[/tex]
[tex]\implies x(x-5)-5(x-5)[/tex]
[tex]\implies (x-5)(x-5)[/tex]
[tex]\implies (x-5)^2[/tex]
Therefore:
[tex]\implies \sqrt{x^2-10x+25}=\sqrt{(x-5)^2}[/tex]
[tex]\implies \sqrt{x^2-10x+25}=\pm(x-5)[/tex]
[tex]\implies \sqrt{x^2-10x+25}=|x-5|[/tex]
As the domain is -5 ≤ x < 5, then:
[tex]\implies y=-x+5[/tex]
and the range is 0 < y ≤ 10
determine if a function or not
The provided graph is not a function because it touches the graph more than one point.
What is a function?It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
We have given a graph of a function.
We can check the whether the given graph is a function or not by drawing a vertical line if the vertical line touches the graph more than two points then the graph is not a function.
The given graph is not a function because it touches the graph more than one point.
Thus, the provided graph is not a function because it touches the graph more than one point.
Learn more about the function here:
brainly.com/question/5245372
#SPJ1
Help me Please!!!!! I need it!!!!
Answer:
-3125
Hope this helps!!
I have no clue, I have asked others and they don't know either.
To find the point of symmetry:
⇒ must find where the distance between the original point and the
line of symmetry and reflected point and the line of symmetry are
equally distant from each other
Based on that knowledge:
⇒ the image appears to be entirely reflected horizontally
⇒ when the line of symmetry is the y-axis
⇒ A, A' equal distant from line of symmetry
⇒ B, B' equal distant from line of symmetry
⇒ C, C' equal distant from line of symmetry
Answer: y- axis
Hope that helps!
Cecilia bought 24 bottles of juice that each contained 12 fluid ounces of juice. How many pints of juice did she buy?
Answer:
it 288
Step-by-step explanation:
if u multiply 24x12 it gives you 288 hope this help you
PLEASE HELP ASAP PLEASEEEE
show calculations: √(x^2-8x+16) if x≥4
Answer:
If we square both sides then we get
x2-8x+16 = (x-4)2
Now if we expand the right side of the equation we get
x2-8x+16 = (x-4)(x-4)
x2-8x+16 = x2-8x+16
So no matter what x is, the right side will be equal to the left side.
However, if we look at the original equation on the left side, √(x2-8x+16) , the value under the square root symbol has to be greater than or equal to zero (otherwise we get an imaginary number and you might not be working with those yet)
Step-by-step explanation:
So in order for √(x2-8x+16) to be greater than or equal to zero, x has to be greater than or equal to 4. If x is less than 4 you get a negative number. If x is greater than 4, you'll get the same answer on both sides no matter what x is
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
Let's solve ~
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 8x + 16} [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 4x - 4x + 16} [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{} (x - 4) - 4(x - 4)} [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ (x - 4)(x - 4)} [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ (x - 4) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: x - 4[/tex]
Now, it's given that ~
[tex]\qquad \sf \dashrightarrow \:x \geqslant 4[/tex]
plug the value of x as 4 :
[tex]\qquad \sf \dashrightarrow \:4 - 4[/tex]
[tex]\qquad \sf \dashrightarrow \:0[/tex]
So, we can infer that :
Value of the required expression lies in :
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 8x + 16} \geqslant 0[/tex]
it's value is always greater than pr equal to 0, satisfying the given condition ~
Which expression is equivalent to startfraction (2 m n) superscript 4 baseline over 6 m superscript negative 3 baseline n superscript negative 2 baseline endfraction? assume m not-equals 0, n not-equals 0.
The equivalent expression of [tex]\frac{(2mn)^4}{6m^{-3}n^{-2}}[/tex] is [tex]\frac{(2mn)^4}{6m^{-3}n^{-2}}[/tex]
How to determine the equivalent expression?The expression is given as:
[tex]\frac{(2mn)^4}{6m^{-3}n^{-2}}[/tex]
Evaluate the expression on the numerator
[tex]\frac{16m^4n^4}{6m^{-3}n^{-2}}[/tex]
Divide 16 by 6
[tex]\frac{8m^4n^4}{3m^{-3}n^{-2}}[/tex]
Apply the law of indices
[tex]\frac{8m^7n^6}{3}[/tex]
Hence, the equivalent expression of [tex]\frac{(2mn)^4}{6m^{-3}n^{-2}}[/tex] is [tex]\frac{(2mn)^4}{6m^{-3}n^{-2}}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
#SPJ4
How many 4-digit numbers are neither multiples of 2 nor multiples of 5?
Answer:
3,600
Explanation:
There's nine thousand numbers here, 4,500 of which are even, you will need to subtract mutiples of five from this number, making it even smaller.
subtract the non-even five's (exactly half of the 1800 hundred fives that fit in our little original number, (900!) ) 4,500-900= 3,600. Which should be your answer. :D
Step-by-step explanation:
How would I work this one out?
Answer:
See below
Step-by-step explanation:
each term is the sum of the two before it
2 3 5 8 13 21 34
A 30cm ruler sometimes measures inches on the other side.
How many feet are approximately same as 30cm ?
1inch = 2.5cm
1foot = 12inches
1inch = 2.5cm
∆ 30cm
1inch x 30cm \2.5cm =?5cm =2inch
so 30cm=12inchHow do you find the frequency in statistics?
Answer:
Count the tally marks to determine the frequency of each class. The relative frequency of a data class is the percentage of data elements in that class. The relative frequency can be calculated using the formula fi=fn f i = f n , where f is the absolute frequency and n is the sum of all frequencies
work out the height of this triangle with a base,B=2.1mm and an area of, A=39.06mm squared
Answer:
37.2mm
Step-by-step explanation:
A = ½bh
h = (2A)/b
h = (2(39.06))/2.1
h = 78.12/2.1
h = 37.2mm