2HCl + Na2SO4 yields 2NaCl + H2SO4

If you start with 20.0 grams of hydrochloric acid, how many grams of sulfuric acid will be produced?

Answers

Answer 1

Answer:

26.90 grams of sulfuric acid

Explanation:

2HCl + Na2SO4 → 2NaCl + H2SO4

HCl = 36.46 g/mol

H2SO4 = 98.08 g/mol

Calculating 20 grams in HCI

n(HCl) = mass/molar mass

= 20.0 g/36.46 g/mol

= 0.5487 mol

2 moles of HCl produces 1 mole of H2SO4

n(H2SO4) = 0.5487 mol/2

= 0.2744 mol

Mass of H2SO4

mass(H2SO4) = n(H2SO4) x molar mass

= 0.2744 mol x 98.08 g/mol

= 26.90 g

Answer 2

Answer:

26.9 grams

Explanation:

This is a stoichiometry problem. To solve it, we need to determine the number of moles of hydrochloric acid (HCl) that are present in 20.0 grams of the substance. The molar mass of HCl is 36.46 g/mol, so 20.0 grams of HCl is equivalent to 20.0 g / 36.46 g/mol = 0.549 moles of HCl.

According to the balanced chemical equation you provided, two moles of HCl react with one mole of sodium sulfate (Na2SO4) to produce two moles of sodium chloride (NaCl) and one mole of sulfuric acid (H2SO4). This means that for every two moles of HCl that react, one mole of H2SO4 is produced.

Since we have 0.549 moles of HCl, we can expect to produce 0.549 moles / 2 = 0.275 moles of H2SO4.

The molar mass of H2SO4 is 98.08 g/mol, so 0.275 moles of H2SO4 is equivalent to 0.275 mol * 98.08 g/mol = 26.9 grams of sulfuric acid.


Related Questions

Here are your data for the titration of the commercial aspirin CA1 sample solutions. Trial #1 Trial #2 Mass of commercial aspirin CA1 sample Volume of NaOH 0.215 9 16.37 mL 0.206 g 16.08 mL Part 1: Determine the number of moles of acid (total) in your commercial aspirin CA1 sample for both trials. Part 2: In lab 3 you determined that the commercial aspirin CA1 sample is 2.0% salicylic acid by mass. Determine the number of moles of salicylic acid (CzH603) for each trial.
Part 3: Determine the number of moles of acetylsalicylic acid in your commercial aspirin CA1 sample for both trials. Enter your answer to 3 significant figures.

Answers

The number of moles of acetylsalicylic acid in the commercial aspirin CA1 sample for Trial #1 is 0.001576 mol, and for Trial #2 it is 0.001547 mol.

Part 1: To determine the number of moles of acid in the commercial aspirin CA1 sample, we can use the following equation:

moles of acid = volume of NaOH (in L) x concentration of NaOH (in mol/L)

The concentration of NaOH is typically given as 0.1000 M (mol/L), but we should confirm this value in the lab manual or with our instructor.

For Trial #1:

moles of acid = 16.37 mL x 0.1000 mol/L = 0.001637 mol

For Trial #2:

moles of acid = 16.08 mL x 0.1000 mol/L = 0.001608 mol

Part 2: Since we know that the commercial aspirin CA1 sample is 2.0% salicylic acid by mass, we can use the mass of the sample to determine the mass of salicylic acid. Then we can use the molar mass of salicylic acid (138.12 g/mol) to calculate the number of moles.

mass of salicylic acid = mass of sample x 2.0% = (0.206 g + 0.215 g) x 0.020 = 0.00842 g

moles of salicylic acid for Trial #1 = 0.00842 g / 138.12 g/mol = 6.10 x [tex]10^-5[/tex] mol

moles of salicylic acid for Trial #2 = 0.00842 g / 138.12 g/mol = 6.10 x [tex]10^-5[/tex] mol

Part 3: The remaining moles of acid in the sample must be due to acetylsalicylic acid. To calculate the moles of acetylsalicylic acid, we can subtract the moles of salicylic acid from the total moles of acid.

moles of acetylsalicylic acid for Trial #1 = moles of acid - moles of salicylic acid = 0.001637 mol - 6.10 x [tex]10^-5[/tex] mol = 0.001576 mol

moles of acetylsalicylic acid for Trial #2 = moles of acid - moles of salicylic acid = 0.001608 mol - 6.10 x [tex]10^-5[/tex] mol = 0.001547 mol

Therefore, the number of moles of acetylsalicylic acid in the commercial aspirin CA1 sample for Trial #1 is 0.001576 mol, and for Trial #2 it is 0.001547 mol.

Learn more about commercial aspirin

https://brainly.com/question/31503640

#SPJ4

A steel tank is completely filled with 1.60 m3 of ethanol when both the tank and the ethanol are at a temperature of 35.0∘C. When the tank and its contents have cooled to 18.0 ∘C, what additional volume of ethanol can be put into the tank?

Answers

The additional volume of ethanol that can be put into the tank when it cools from 35.0°C to 18.0°C is 0.0368 m³.

To find the additional volume of ethanol, we need to consider the volume contraction of both ethanol and the steel tank. First, find the change in temperature: ΔT = T_final - T_initial = 18.0°C - 35.0°C = -17.0°C.

Next, we need to find the volume change for both the ethanol and the steel tank using their respective coefficients of volume expansion (β_ethanol and β_steel). The equation is ΔV = V_initial * β * ΔT.

Once we find the volume changes, subtract the volume change of the steel tank from that of the ethanol. This will give us the additional volume of ethanol that can be put into the tank when the temperature drops to 18.0°C.

To know more about coefficients of volume expansion click on below link:

https://brainly.com/question/31456049#

#SPJ11

Write a balanced chemical equation for steps (i) and (ii) given below in the production of potassium alum, KAl(SO4)212H2O, and also for the net ionic equation. The equation for the first step is shown below:2Al(s) + 2KOH(aq) + 6H2O(l) ---- 2Al(OH)4–(aq) + 2K+(aq) + 3H2(g)

Answers

the balanced chemical equations for the production of potassium alum, [tex]kAl(so_{4} )_{2} .12H_{2} O[/tex]

Step (i) is already provided:

[tex]2Al + 2koh(aq) + 6H_{2} O(l) -------- > 2Al(oH)_{4} + 2K^{+} (aq) + 3H_{2} (g)[/tex]
Step (ii) involves reacting aluminum hydroxide complex ions and potassium ions with sulfuric acid to form potassium alum:

[tex]2Al(OH)_{4} ^{-} (aq) + 2k^{+} (aq) + 2H_{2}SO_{4} (aq) -- > KAl(SO_{4} x)_{2}.12H_{2}O[/tex]

For the net ionic equation, you can remove spectator ions (K+), which do not participate in the reaction:

[tex]2Al(OH)_{4} )^{-} (aq) + 2H_{2} SO_{4} (aq) ---- > Al_{2}(SO _{4} )_{3} (s) + 8H_{2} O(l)[/tex]

To know more about balanced chemical equations click here:

https://brainly.com/question/28294176

#SPJ11

in cis-hept-4-en-2-yne the shortest carbon-carbon bond is between carbons _________ a. C2 and C3 b. C1 and C2 c. C6 and C7 d. C4 and C5

Answers

In cis-hept-4-en-2-yne, the shortest carbon-carbon bond is between carbons C1 and C2.


Hi! I'd be happy to help you with your question. In cis-hept-4-en-2-yne, the shortest carbon-carbon bond is between carbons:
d. C4 and C5
This is because the "en" in the name indicates a carbon-carbon double bond, and the "yne" represents a carbon-carbon triple bond. The number before these suffixes indicates the position of the bonds. So, there is a double bond between carbons 4 and 5, and a triple bond between carbons 2 and 3. Triple bonds are shorter than double bonds, so the shortest bond is between C4 and C5.

learn  more  about carbon here

https://brainly.com/question/22530423

#SPJ11

balance the equation in basic conditions. phases are optional. equation: so_{3}^{2-} co(oh)_{2} -> co so_{4}^{2-} so2−3 co(oh)2⟶co so2−4

Answers

The balance equation in basic conditions is given as ;

Co(OH)₂ + SO₃²⁻ ⇒ Co + SO₄²⁻ + H₂O

The inclusion of stoichiometric coefficients to the reactants and products is necessary to balance chemical equations. This is significant because a chemical equation must adhere to the laws of conservation of mass and constant proportions, meaning that both the reactant and product sides of the equation must include the same amount of atoms of each element.

Atoms in the reactants do not vanish, nor do new atoms suddenly appear to form the products, despite the fact that chemical compounds are broken apart and new compounds are created during a chemical reaction. Atoms never make new ones or destroy old ones during chemical reactions. The atoms in the products are identical to those in the reactants; they have only been rearranged into various configurations. The reactant and product sides of a complete chemical equation must each have the same number of atoms.

The given reaction is:

SO₃²⁻ + CO(OH)₂ ⇒ Co + SO₄²⁻

The two half reaction present are

SO₃²⁻ ⇒ SO₄²⁻

Co(OH)₂ ⇒ Co

Therefore, the balanced reaction is;

Co(OH)₂ + SO₃²⁻ ⇒ Co + SO₄²⁻ + H₂O

Learn more about Balanced equation:

https://brainly.com/question/23877810

#SPJ4

what is the ratio of the osmotic pressures of 0.20 m kcl and 0.15 m kcl. express as a numeric value (e.g., 0.3 osmol a/0.2 osmol b = 1.5).

Answers

The ratio of the osmotic pressures is 1.33.

The ratio of the osmotic pressures of 0.20 M KCl and 0.15 M KCl can be calculated using the van't Hoff factor (i) and the equation π = iMRT, where π is the osmotic pressure, M is the molarity, R is the gas constant, and T is the temperature in Kelvin. The van't Hoff factor for KCl is 2.

For 0.20 M KCl, the osmotic pressure can be calculated as π = 2 x 0.20 x 0.0821 x 298 = 9.71 atm.
For 0.15 M KCl, the osmotic pressure can be calculated as π = 2 x 0.15 x 0.0821 x 298 = 7.28 atm.

Therefore, the ratio of the osmotic pressures of 0.20 M KCl and 0.15 M KCl is 9.71/7.28 = 1.33.

Learn more about osmotic pressures at https://brainly.com/question/25904085

#SPJ11

For a reaction that has an equilibrium constant of 7 × 10^–3 , which of the following statements must be true?
A) ∆S° is positive.
B) ∆G° is positive.
C) ∆G° is negative.
D) ∆H° is negative.
E) ∆H° is positive.
I know the answer is B but not sure WHY.

Answers

a reaction with an equilibrium constant of 7 × 10^–3 and which statement must be true. The answer is B) ∆G° is positive. Here's why:

The equilibrium constant (K) is related to the standard Gibbs free energy change (∆G°) by the equation:

∆G° = -RT ln(K)

Where R is the gas constant (8.314 J/mol K) and T is the temperature in Kelvin.

In this reaction, K = 7 × 10⁻³, which is less than 1. When K is less than 1, the natural logarithm of K (ln(K)) will be negative.

∆G° = -RT(-) [Because ln(K) is negative]

This means that ∆G° must be positive since the product of two negative numbers is positive. Therefore, the correct answer is B) ∆G° is positive.

for more information on equilibrium constant : https://brainly.com/question/31321186

#SPJ11

18.69 (SYN) Suggest how you would synthesize each of the following, using cyclopentanone as one of the reagents. (a) O b) O CN

Answers

a) To synthesize the Oxygen using cyclopentanone, one could perform a Robinson annulation.

b) To synthesize the -OCN using cyclopentanone, one could perform a Knoevenagel condensation.

What do u mean by synthesize?

Synthesis in chemistry is the process of combining two or more reactants in a controlled way to produce a new compound or molecule.

Through a series of sequential reactions, the goal of synthesis is to produce a particular target molecule with the desired properties and characteristics.

(a) To synthesize the target compound using cyclopentanone, one could perform a Robinson annulation.

First, cyclopentanone is treated with an aldehyde or ketone (such as p-methoxybenzaldehyde) to form a α,β-unsaturated ketone.

Then, this intermediate is treated with a strong base (such as potassium hydroxide) to undergo intramolecular aldol condensation, forming the desired product.

(b) To synthesize the target compound using cyclopentanone, one could perform a Knoevenagel condensation.

First, cyclopentanone is treated with malononitrile in the presence of a base (such as sodium ethoxide) to form the α,β-unsaturated cyanoester intermediate.

Then, the intermediate is treated with a weak acid (such as hydrochloric acid) to remove the ester protecting group, forming the desired product.

To know more about reactions visit:

https://brainly.com/question/29762381

#SPJ1

When 50 mL of 0.1M NaOH is added to 50Ml of 0.2M solution of an acid HX, the pH of the resultant solution is 6. What is the Ka of HX?
A) 1 x 10^-6
B) 5 x 10^-7
C) 2 x 10^-6
D) 1 x 10^-8
E) 2 x 10^-5

Answers

The concentration of [HX] after the reaction is 0.05 M. Since [OH-] is also 0.05 M, the pOH is 1.0. Therefore, the initial pH is 13. Subtracting 7 gives pKa = 6, so Ka = 1 x 10^-6 (A).

When 50 mL of 0.1 M NaOH is added to 50 mL of 0.2 M solution of an acid HX, the pH of the resultant solution is 6. To find the Ka of HX, first, determine the moles of HX and NaOH in the solution.

Moles of NaOH = 0.1 M × 0.050 L = 0.005 moles
Moles of HX = 0.2 M × 0.050 L = 0.010 moles

Since NaOH is a strong base, it will react completely with HX, forming 0.005 moles of HX- and 0.005 moles of unreacted HX.

Now, the total volume of the solution is 100 mL or 0.1 L, so the concentrations are:

[HX-] = [NaOH] = 0.005 moles / 0.1 L = 0.05 M
[HX] = (0.010 - 0.005) moles / 0.1 L = 0.05 M

Since the pH of the resultant solution is 6, the concentration of H+ is:

[H+] = 10^(-pH) = 10^(-6) = 1 × 10^(-6) M

Now, use the Ka expression to find the Ka of HX:

Ka = ([H+][HX-]) / [HX]

Ka = (1 × 10^(-6) M)(0.05 M) / 0.05 M = 1 × 10^(-6)

Learn more about solution here:

https://brainly.com/question/30665317

#SPJ11

Part A Select the statement that best explains how to determine which wavelength corresponds to each transition. The shorter the wavelength, the greater the energy of the photon. Therefore, the 486 nm wavelength corresponds to the n = 4 to n = 2 transition, and the 656 nm wavelength corresponds to the n = 3 to n=2 transition. The longer the wavelength, the higher the energy of the photon. Therefore, the 486 nm wavelength corresponds to the n = 4 to n = 2 transition, and the 656 nm wavelength corresponds to the n = 3 to n = 2 transition. The shorter the wavelength, the greater the energy of the photon. Therefore, the 486 nm wavelength corresponds to the n=3 to n=2 transition, and the 656 nm wavelength corresponds to the n=4 to n=2 transition. The longer the wavelength, the lower the energy of the photon. Therefore, the 486 nm wavelength corresponds to the n= 3 ton = 2 transition, and the 656 nm wavelength corresponds to the n = 4 to n = 2 transition. Submit Request Answer

Answers

The statement that best explains how to determine which wavelength corresponds to each transition is: "The shorter the wavelength, the greater the energy of the photon. Therefore, the 486 nm wavelength corresponds to the n = 4 to n = 2 transition, and the 656 nm wavelength corresponds to the n = 3 to n = 2 transition."

This is because shorter wavelengths have higher frequencies and energy, and correspond to transitions with larger energy differences between the energy levels involved.

" The longer the wavelength, the lower the energy of the photon. Therefore, the 486 nm wavelength corresponds to the n= 3 ton = 2 transition, and the 656 nm wavelength corresponds to the n = 4 to n = 2 transition. " is therefore incorrect.

More on wavelength: https://brainly.com/question/28265483

#SPJ11

if you move 10 meters in 5 seconds what is your speed

Answers

Answer:

2m/s

Explanation:

Average speed is defined by the equation: avg. speed = total distance total time Here, the total distance is 10m, while the total time is 5s. ∴ avg. speed = 10m 5s = 2m/s.

Draw the Lewis structure for SF6. What is the hybridization on the S atom?sp3d2spsp2sp3sp3d

Answers

The hybridization of the S atom allows for the six bonding pairs of electrons to be arranged in an octahedral geometry, consistent with the observed structure of SF6.

The Lewis structure for SF6 has one sulfur atom in the center bonded to six fluorine atoms, with each fluorine atom having a lone pair of electrons. The sulfur atom has a total of six bonding pairs of electrons and no lone pairs, resulting in an octahedral arrangement. The hybridization on the S atom in SF6 is sp3d2. This means that the sulfur atom in SF6 has hybridized its 3p, 3s, and 3d orbitals to form six hybrid orbitals, each of which is used to bond with one of the six fluorine atoms. Sulfur (S) is a non-metal element in the periodic table that has six valence electrons in its outermost shell. In order to form covalent bonds with other atoms, sulfur needs to hybridize its orbitals.

Learn more about hybridization of the S atom here:

https://brainly.com/question/31327640

#SPJ11

for the reaction a (g) → 3 b (g), kp = 0.369 at 298 k. what is the value of ∆g for this reaction at 298 k when the partial pressures of a and b are 5.70 atm and 0.250 atm?

Answers

The value of ΔG for this reaction at 298 K, when the partial pressures of A and B are 5.70 atm and 0.250 atm, respectively, is approximately -8.199 J/mol.

To calculate the value of ΔG (change in Gibbs free energy) for the reaction at 298 K, we can use the equation:

ΔG = ΔG° + RT ln(Q)

where ΔG° is the standard Gibbs free energy change, R is the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin, and Q is the reaction quotient.

First, let's calculate the reaction quotient, Q, using the given partial pressures of A and B:

[tex]Q = (Pb)^3 / Pa[/tex]

[tex]Q = (0.250 atm)^3 / (5.70 atm)[/tex]

Q = 0.0175881

Now, we need to calculate ΔG° using the equilibrium constant, Kp:

Kp = exp(-ΔG°/RT)

0.369 = exp(-ΔG°/(8.314 J/(mol·K) * 298 K))

Taking the natural logarithm of both sides:

ln(0.369) = -ΔG°/(8.314 J/(mol·K) * 298 K)

Solving for ΔG°:

ΔG° = -ln(0.369) * (8.314 J/(mol·K) * 298 K)

ΔG° = 20.698 J/mol

Now, we can substitute the values into the equation for ΔG:

ΔG = ΔG° + RT ln(Q)

ΔG = 20.698 J/mol + (8.314 J/(mol·K) * 298 K) * ln(0.0175881)

ΔG ≈ 20.698 J/mol + (-28.897 J/mol)

ΔG ≈ -8.199 J/mol

Learn more about Gibbs free energy, here:

https://brainly.com/question/13795204

#SPJ12

calculate the ph of a 1.7 m solution of h 2a ( k a1 = 1.0 × 10 –6 and k a2 is 1.0 × 10 –10). a. 10.00 b. 2.88 c. 11.12 d. 5.77 e. 7.00

Answers

The carbonic acid-bicarbonate buffer system plays a major role in maintaining the pH of human blood between the range of 7.35 and 7.45. Hence (d) is the correct option.

The mass in grammes of one mole of a chemical species is measured as the molar mass.On the one hand, the pan-resistant K. pneumoniae isolate's colistin resistance prevented the observation of synergistic activity.  Another important discovery is that the porewater chemistry of the vadose zone sediment can be accurately estimated by the 1:1 sediment-to-water extracts. Ka=Ka1×Ka2=10-6×10-10=10-16. A 1.0 M H2A solution has a pH of 3.00 (Ka1 = 1.0 10-6; Ka2 = 1.0 10-10).

To know more about buffer system, click here:

https://brainly.com/question/22821585

#SPJ4

which is less soluble in water, 1-pentanol or 1-heptanol? explain.

Answers

The compound that is less soluble in water between 1-pentanol and 1-heptanol is 1-heptanol.

Solubility of alcohols in water depends on the balance between hydrophilic (water-loving) and hydrophobic (water-fearing) interactions. Both 1-pentanol and 1-heptanol contain a hydroxyl group (-OH) that can form hydrogen bonds with water molecules, which is a hydrophilic interaction. However, they also have hydrocarbon chains that are hydrophobic and do not interact favorably with water.

1-pentanol has a shorter hydrocarbon chain (five carbons) compared to 1-heptanol, which has a longer chain (seven carbons). As the length of the hydrocarbon chain increases, the hydrophobic interactions become more dominant, reducing the compound's overall solubility in water. Therefore, 1-heptanol, with its longer hydrocarbon chain, is less soluble in water than 1-pentanol, as its hydrophobic interactions outweigh its hydrophilic interactions.

Learn more about solubility at:

https://brainly.com/question/9098308

#SPJ11

what is the ph of a 0.001-m solution of hcl? (give the result in two sig fig)

Answers

Answer:

Explanation:

Simple use the equation pH = -log[H+].

Since HCl, hydrochloric acid is a strong acid it will dissociate completely.

This will result in 0.001 M = [H+] = [Cl-].

Then substitute into pH

pH = -log(0.001) = 3.0

(If you need to consider activity coefficients you will multiply the log function by the activity.)

what is the poh of a buffer that consists of 0.591 m boric acid (h3bo3) and 0.554 m sodium borate (nah2bo3)? ka of boric acid is 5.8 x 10-10.

Answers

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

How to find pOH of a buffer solution?

To find the pOH of a buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]), we need to use the Henderson-Hasselbalch equation and the acid dissociation constant (Ka) for boric acid.

The Henderson-Hasselbalch equation is: pH = pKa + log([A-]/[HA])

Since you need to find the pOH, you will first find the pH and then subtract it from 14 to get the pOH.

1. Determine the Ka of boric acid: Ka = 5.8 × 10^(-10)
2. Calculate the pKa: pKa = -log(Ka) = -log(5.8 × 10^(-10)) ≈ 9.24
3. Use the Henderson-Hasselbalch equation to find the pH:
  pH = pKa + log([A-]/[HA])
  pH = 9.24 + log(0.554/0.591) ≈ 9.24 - 0.029 ≈ 9.21
4. Calculate the pOH: pOH = 14 - pH = 14 - 9.21 ≈ 4.79

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

To know more about Henderson-Hasselbach equation:

https://brainly.com/question/31023091

#SPJ11

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

How to find pOH of a buffer solution?

To find the pOH of a buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]), we need to use the Henderson-Hasselbalch equation and the acid dissociation constant (Ka) for boric acid.

The Henderson-Hasselbalch equation is: pH = pKa + log([A-]/[HA])

Since you need to find the pOH, you will first find the pH and then subtract it from 14 to get the pOH.

1. Determine the Ka of boric acid: Ka = 5.8 × 10^(-10)
2. Calculate the pKa: pKa = -log(Ka) = -log(5.8 × 10^(-10)) ≈ 9.24
3. Use the Henderson-Hasselbalch equation to find the pH:
  pH = pKa + log([A-]/[HA])
  pH = 9.24 + log(0.554/0.591) ≈ 9.24 - 0.029 ≈ 9.21
4. Calculate the pOH: pOH = 14 - pH = 14 - 9.21 ≈ 4.79

The pOH of the buffer that consists of 0.591 M boric acid ([tex]H_{3}BO_{3}[/tex]) and 0.554 M sodium borate ([tex]NaH_{2}BO_{3}[/tex]) is approximately 4.79.

To know more about Henderson-Hasselbach equation:

https://brainly.com/question/31023091

#SPJ11

1. The pH of 300 mL solution made of 0.59 M acetic acid and 1.07 M potassium acetate is (Ka=1.8 x 10^-5) after the addition of 0.74 moles NaOH?

Answers

Answer:

13.7

Explanation:

First we must calculate the moles of HC2H3O2 and KC2H3O2

300 mL = .300 L

.300 L x (.59 moles /L) = 0.18 moles of Acetic Acid

.300 L x (1.07 moles / L) = .321 moles of Potassium Acetate

Since more moles of NaOH is added than there are moles of Acid we will find the excess NaOH

.74 - .18 = .56 moles

Convert this to molarity .56 moles OH- / .300 L = 1.9 M

pH = pOH + 14

pH = -log(1.9) + 14 = 13.7

does your product contain newly created alkenes? if so, should they be e or z? for Adol condensation

Answers

The Adol condensation reaction may form a product with a newly created alkene, which can exist as either E or Z isomers, depending on the stereochemistry of the starting materials used in the reaction.

What is the configuration of newly created alkenes in the Adol condensation reaction?

In the Adol condensation reaction, the reactants are an aldehyde or ketone and a carbonyl compound (aldehyde or ketone). The reaction results in the formation of a β-hydroxyketone or aldehyde. The product may contain an alkene depending on the reaction conditions and the reactants used.

If the product contains a newly created alkene, the configuration of the double bond would depend on the stereochemistry of the starting materials. If the carbonyl compounds used in the reaction have different substituents on the carbonyl carbon, the resulting alkene can exist as either E or Z isomers, depending on the relative orientation of the substituents on either side of the double bond.

The stereochemistry of the product can be predicted using Zaitsev's rule, which states that the more substituted alkene is formed as the major product. However, the stereochemistry of the alkene in the product can also be influenced by factors such as steric hindrance and the reaction conditions used.

To learn more about Adol condensation, visit: https://brainly.com/question/27178362

#SPJ1

An insulating rod carries +2.0 nC of charge. After rubbing it with a material, you find it carries -3 nC of charge. How much charge was transferred to it? 1x10E-9 Why? a)-5 nC 3 nC l nC

Answers

An insulating rod carries +2.0 nC of charge. After rubbing it with a material, you find it carries -3 nC of charge. The charge transferred to it was -5 nC.

When the insulating rod was rubbed with the material, it gained electrons and became negatively charged. This means that 5 nC of electrons were transferred to the rod, since 2.0 nC - 3.0 nC = -1.0 nC (the rod gained 1.0 nC of negative charge) and we know that electrons have a charge of -1.6 x 10⁻¹⁹ C.
To convert -1.0 nC to the number of electrons transferred, we can use the equation:
Q = ne
where Q is the charge in coulombs, n is the number of electrons, and e is the charge of one electron.
Rearranging the equation to solve for n, we get:
n = Q/e
Plugging in the values, we get:
n = (-1.0 x 10⁻⁹ C) / (-1.6 x 10⁻¹⁹ C)
n = 6.25 x 10^9 electrons
Since each electron has a charge of -1.6 x 10⁻¹⁹C, the total charge transferred is:
Q = ne
Q = (6.25 x 10⁹electrons) x (-1.6 x 10⁻¹⁹ C/electron)
Q = -1.0 x 10⁻⁹ C (or -5 nC, since 1 nC = 10⁻⁹ C).

To learn more about charge https://brainly.com/question/28020194

#SPJ11

gduring electrolysis of an aqueous solution of potassium sulfate, what products are produced at the cathode? one or more answers are correct. you will receive negative points for incorrect answers.group of answer choicesh3o oh-oxygen gask hydrogen gaselectronscopper was plated onto one of the electrodestwice as much gas was formed at one electrode that the othergas bubbles at both platinum electrodesthe indicator turned pink at one electrodegas bubbles were visible only at one electrodea brown color formed at one electrodebrown color disappears at the other electrodethe indicator on one side turned yellow and the other side turned blue

Answers

During the electrolysis of an aqueous solution of potassium sulfate, multiple products can be produced at the cathode depending on the experimental conditions like hydrogen gas (H2), hydroxide ions (OH-). It is also possible for electrons to be reduced at the cathode like copper. Additionally, if the solution is acidic, oxygen gas (O2) can be produced at the anode and migrate to the cathode, where it can be reduced to form water.


Hydrogen gas (H2) is formed when water is reduced at the cathode. The reduction of water produces hydroxide ions (OH-) and hydrogen ions (H+), with the hydrogen ions being reduced to hydrogen gas.

Hydroxide ions (OH-), which can also be produced by the reduction of water. The presence of hydroxide ions can be detected by observing the solution turning pink due to the phenolphthalein indicator.
It is also possible for electrons to be reduced at the cathode, which can result in the formation of other products such as copper. If copper electrodes are used, copper ions from the solution can be reduced to form copper atoms that plate onto the electrode. Additionally, if the solution is acidic, oxygen gas (O2) can be produced at the anode and migrate to the cathode, where it can be reduced to form water.
It is important to note that the experimental conditions can greatly influence the products produced at the cathode. For example, if the electrodes are not of the same material or if the voltage is unevenly distributed, it is possible for twice as much gas to form at one electrode than the other. If the solution is not stirred or agitated, gas bubbles may only be visible at one electrode. Additionally, the presence of different indicators on each side of the cell can cause different colors to form at each electrode. For example, a brown color may form at one electrode and disappear at the other, or the indicator on one side may turn yellow while the other turns blue.

for more such question on electrolysis

https://brainly.com/question/12994141

#SPJ11

The standard potential of a Daniell cell, with cell reaction Zn(s) + Cu^2+(aq) ~ Zn^2+ (aq) + Cu(s), is 1.10 V at 25 °C. Calculate the corresponding standard reaction Gibbs energy.

Answers

The standard Gibbs energy change for the Daniell cell reaction is -211.7 kJ/mol, calculated using the equation ΔG° = -nFE°, where n = 2 and E° = 1.10 V.

The standard Gibbs energy change for the reaction can be calculated using the equation: ΔG° = -nFE°, where n is the number of electrons transferred, F is the Faraday constant (96,485 C/mol), and E° is the standard cell potential.
In this case, n = 2 (two electrons are transferred), and E° = 1.10 V. Therefore:
ΔG° = -2 × 96,485 C/mol × 1.10 V
ΔG° = -211,666 J/mol

Converting this value to kilojoules per mole:

ΔG° = -211.7 kJ/mol

So the corresponding standard reaction Gibbs energy for the Daniell cell reaction is -211.7 kJ/mol.

learn more about Gibbs energy here:

https://brainly.com/question/20358734

#SPJ11

titrarion lab would the use of a diprotic acid alter the results? why or why not?

Answers

In a titration lab, using a diprotic acid could alter the results because the characteristic can lead to different titration curves and equivalence points.

A diprotic acid is an acid that can donate two protons (H+ ions) per molecule during the titration process. This characteristic can lead to different titration curves and equivalence points, as each proton is donated at a separate stage, causing a distinct change in pH. If a monoprotic acid is expected in the experiment but a diprotic acid is used instead, the results would be affected due to the presence of two distinct equivalence points, as opposed to one. Consequently, the calculations based on the titration data will be inaccurate, leading to erroneous conclusions about the concentration or the nature of the analyte.

Therefore, it is crucial to choose the appropriate type of acid for titration experiments, whether monoprotic or diprotic, to obtain accurate and reliable results. Proper identification and consideration of the analyte and the titrant involved are essential in ensuring the validity of the titration outcomes. In a titration lab, using a diprotic acid could alter the results  because the characteristic can lead to different titration curves and equivalence points.

Learn more about titration curves at:

https://brainly.com/question/30046193

#SPJ11

Describe what you expect to see in the two absorbance spectra of a concentrated Blue #1 dye solution compared a dilute Blue #1 dye solution. Directly address each of the aspects listed below, identifying whether they would be the same or different for dilute versus concentrated solutions, For differences, identify how you think the aspect(s) will be different. 1, a. Peak height b. Peak width c. λ.nax

Answers

In the two absorbance spectra of a concentrated Blue #1 dye solution compared to a dilute Blue #1 dye solution, there are several differences that we can expect to see. First, we can expect to see a difference in peak height.

The peak height of the concentrated solution will be higher compared to the peak height of the dilute solution. This is because a higher concentration of the dye in the solution will absorb more light, resulting in a higher peak.

Second, we can expect to see a difference in peak width. The peak width of the concentrated solution will be narrower compared to the peak width of the dilute solution. This is because a concentrated solution will have fewer water molecules surrounding the dye molecules, resulting in a smaller environment for the dye molecules to interact with the light.

Lastly, we can expect to see a difference in λ.nax, which is the wavelength of maximum absorption. The λ.nax of the concentrated solution will be slightly shifted compared to the λ.nax of the dilute solution. This is because the dye molecules in the concentrated solution will be interacting more closely with each other, resulting in a shift in the absorption wavelength.

In summary, we can expect to see higher peak height, narrower peak width, and a slightly shifted λ.nax in the absorbance spectra of a concentrated Blue #1 dye solution compared to a dilute Blue #1 dye solution.

For more about the absorbance spectra:

https://brainly.com/question/28932083

#SPJ11

Which statement is true for this reaction?
Zn(s) + CuSO4(aq) --> Cu(s) + ZnSO4(aq)
a)metallic zinc is the reducing agent
b)metallic zinc is reduced
c)copper ion is oxidized
d)sulfate ion is the oxidizing agent

Answers

Although Zn is a reductant, it also becomes oxidised. Reason. Reductant is oxidised in a redox process by losing electrons, while oxidant is reduced by absorbing electrons. Hence (c) is the correct option.

This is the result of the more reactive metal, zinc, displacing copper, a less reactive metal, from its solution. As a result of this reaction, copper is reduced from an oxidation state of (+2) to (0) and zinc is oxidised from a state of ((0) to (+2) oxidation. Consequently, zinc is a reducing agent, whereas copper is an oxidising agent. When zinc is added to a solution of copper sulphate, zinc replaces the copper and creates zinc sulphate solution.

To know more about Reductant, click here:

https://brainly.com/question/28813812

#SPJ4

Arrange the salts by their molar solubility in water. Consult the table of solubility product constants for the Ksp value for each salt. Most solubleBaSO4 MgF2 Mg3(PO4)2 Al(OH)2 Least soluble You have arranged the salts by the magnitude of their Ksp. Each salt in this question produces a different number of ions in aqueous solution, so you cannot compare the solubility product constants to determine which salt is the most soluble. Calculate the molar solubility, x, for each salt and arrange them by x.

Answers

The order from most soluble to least soluble based on their molar solubility in water is: MgF₂, Mg₃(PO₄)₂, Al(OH)₂, BaSO₄.

What do you mean by the table of solubility product constants? What is Ksp?

The table of solubility product constants provides the equilibrium constant for the dissolution of an ionic compound in water. It lists the Ksp values for a wide range of compounds at a given temperature, which can be used to determine the solubility of the compound in water. The Ksp value represents the product of the concentrations of the ions in solution when the compound is at equilibrium with the solid phase.

Learn more about molar solubility here:

https://brainly.com/question/28170449

#SPJ1

Choose the redox reaction from the following.
A. Cu+2H2SO4→CuSO4+SO2+2H2O
B. BaCl2+H2SO4→BaSO4+2HCl
C. 2NaOH+H2SO4→Na2SO4+2H2O
D. KNO2+H2SO4→2HNO2+K2SO4

Answers

The redox reaction in the given options is option KNO₂+H₂SO₄→2HNO₂+K₂SO₄. (D)

This is a redox reaction because there is a transfer of electrons between the reactants and products. Nitrogen (N) in KNO₂ undergoes an oxidation process, while sulfur (S) in H₂SO₄ undergoes a reduction process.

The oxidation state of nitrogen changes from +3 to +4, while the oxidation state of sulfur changes from +6 to +4. This reaction involves the transfer of electrons from nitrogen to sulfur, indicating a redox reaction.

Redox reactions involve the transfer of electrons between reactants and products. One reactant undergoes oxidation (loses electrons), while the other undergoes reduction (gains electrons). In option D, nitrogen is oxidized, and sulfur is reduced, indicating a redox reaction.

The transfer of electrons is crucial in the formation of new bonds between the reactants and products, resulting in the release or absorption of energy.

Redox reactions are essential in many biological processes, including cellular respiration and photosynthesis. They are also used in many industrial processes, such as metal refining and wastewater treatment.

To know more about Redox reactions click on below link:

https://brainly.com/question/13293425#

#SPJ11

_____________ is a biochemical sedimentary rock that often forms in carbonate reefs.
A. Coquina
B. Chert
C. Rock Salt
D. Bituminous Coal

Answers

Coquina is a biochemical sedimentary rock that often forms in carbonate reefs.(A)

Coquina is a type of sedimentary rock that is primarily composed of the mineral calcite, which is derived from the skeletal remains of marine organisms such as coral and mollusks. It forms in shallow, warm marine environments, such as carbonate reefs, where the accumulation of these skeletal remains takes place.

Over time, compaction and cementation of these remains cause the formation of coquina rock. Coquina is often loosely cemented and can be easily broken apart. It is different from chert, rock salt, and bituminous coal, which are not associated with carbonate reefs and have different compositions and formation processes.(A)

To know more about sedimentary rock click on below link:

https://brainly.com/question/10709497#

#SPJ11

estimate the ∆h value when hydrogen reacts with oxygen per the following chemical reaction: 2 h‒h(g) o=o(g) → 2 h‒o–h(g)

Answers

The ∆h value for the reaction of hydrogen with oxygen to form water (2 h‒h(g) + o=o(g) → 2 h‒o–h(g)) is -483.6 kJ/mol. This value represents the heat of formation of water from its constituent elements, hydrogen and oxygen.

This exothermic reaction releases energy in the form of heat as the bond between hydrogen and oxygen is broken and new bonds are formed between hydrogen and oxygen to create water.

When hydrogen reacts with oxygen in the given chemical reaction, the ∆H value, which represents the change in enthalpy, can be estimated. The balanced reaction is:

2 H2(g) + O2(g) → 2 H2O(g)

For this reaction, the ∆H value is approximately -483.6 kJ/mol. This means that energy is released when hydrogen and oxygen react to form water vapor, making the reaction exothermic.

Learn more about hydrogen here:

https://brainly.com/question/28937951

#SPJ11

t a certain temperature, t k, kp for the reaction, h2(g) cl2(g) ⇌ 2 hcl(g) is 2.18 x 1042. calculate the value of δgo in kj for the reaction at 705 k.

Answers

The value of ΔG° in kJ for the reaction at 705 K is -1.60 x 10^6 kJ/mol.

To calculate the value of ΔG° in kJ for the reaction at 705 K, we need to use the following equation:

ΔG° = -RTln(Kp)

Where R is the gas constant (8.314 J/mol K), T is the temperature in Kelvin (705 K), and Kp is the equilibrium constant (2.18 x 10^42).

First, we need to convert the equilibrium constant from Kp to Kc, which can be done using the equation:

Kp = Kc(RT)^Δn

Where Δn is the difference in the number of moles of gas between the products and the reactants. In this case, Δn = 2 - 1 - 1 = 0, since there are 2 moles of gas on both sides of the equation.

Therefore, we can calculate Kc as:

Kc = Kp/(RT)^Δn

Kc = 2.18 x 10^42 / (8.314 J/mol K x 705 K)^0

Kc = 2.18 x 10^42

Now, we can plug this value into the equation for ΔG°:

ΔG° = -RTln(Kp)

ΔG° = -8.314 J/mol K x 705 K x ln(2.18 x 10^42)

ΔG° = -1.60 x 10^6 kJ/mol
Here you can learn more about ΔG°

https://brainly.com/question/13738716#

#SPJ11  

Other Questions
in range d5 d12 consolidate data from range d5 d12 in spring and fall worksheets using sum function The upper and lower control limits for a component are 0.150 cm. and 0.120 cm., with a process target of.135 cm. The process standard deviation is 0.004 cm. and the process average is 0.138 cm. What is the process capability index? a. 1.75 b. 1.50 c. 1.25 d. 1.00 a thin uniform-density rod whose mass is 3.4 kg and whose length is 2.3 m rotates around an axis perpendicular to the rod, with angular speed 33 radians/s. its center moves with a speed of 11 m/s.What is its rotational kinetic energy?What is its total kinetic energy? were the investors' purchase of llc interests in radical bunny llc held to be securities under the securities act of 1933? why or why not? find an equation of the tangent line to the curve y=8^x at the point (2,64) ( 2 , 64 ) . Solve for x to make A||B. A 4x + 14 3x + 21 x = [ ? ] what was the significance of World War 1 for the modern movement? the following sql statement contains which type of subquery? select title, retail, category, cataverage from books natural join (select category, avg(retail) cataverage from books group by category); After changing the thorn palm average thorn size and increasing thorn size variation, what happened to the Ostrilope population over time? Given any integer a and any natural number n, there exists a unique integer t in the set {0, 1, 2,...,n 1} such that a t (mod n).Can you type this question instead or writing? the medical term myoptic literally means and actually meand each platform varies in the number of videos or images that can be added for a carousel ad, but the range is limited to what number? a uniform solid cylinder of mass m = 7.95 kg is rolling without slipping along a horizontal surface. the velocity of its center of mass is 24.3 m/s. calculate its energy. Need help implementing 3 of the following scheduling algorithms: First Come First Served (FCFS), Shortest Job First (SJF), Priority Scheduling, or Round Robin by creating a Java program to run a simulation. Create a Process class that will contain necessary information about the process such as process id, running time, arrival time, priority, etc. Then, create another class called Scheduler, in which you will have a List or Queue of Process objects, along with methods for each of the scheduling algorithms. Your program should input information for 10 processes from the user (or set the values in the program code), display the order in which they will run, along with each process wait time and turnaround time then, compute and display the average wait time and average turnaround time.Sample variables for the Process class: pid: process id (unique value) burstTime: running timearrivalTime: arrival timepriority: prioritywaitTime: wait time (initialized to 0)Hints for program:*In the Process class - Create a constructor that will take parameters to initialize pid, burstTime, arrivalTime, and priority; waitTime will be initialized to 0 in the constructor. Create get methods for each of the variables. Include a method called waiting() that will increment the waitTime variable.*In the Scheduler class Include methods for each of the scheduling algorithms (FCFS, SJF, or priority). Choose the most appropriate data structure to store the process objects (either an ArrayList (or List), Queue, or Stack), which can either be an instance variable of the class, or setup as a parameter to each of the scheduling methods.[In the methods it would be useful to create a time variable (counter). Based on the time and algorithm, select which process will run (will need to keep track of remaining running time). While a process is running, will need to call the waiting() method on all processes that have arrived but are not yet running.]*Create a RunScheduler class that contains a main method that will run the simulation. Create the list, or queue, of processes and run each of the 32 algorithms using the methods of the Scheduler class. What is output?new_list = [10, 10, 20, 20, 30, 40]for i in new_list[:]:print(i)new_value = new_list.pop(0) Two uniform circular disks having the same and the same thickness are made from different materials The disk with the smaller rotational inertia A neither both rotational inertias are the same B the disk with the larger torque C the one made from the more dense material D the one made from the less dense material E the disk with the larger angular velocity Hw 17.1 (NEED HELPPP PLS)Triangle proportionality, theorem A project has an initial investment of $12,000 and then cash inflows of $5,500 (year 1), $7000 (year 2) and $3000 (year 3). Calculate the IRR. A. 8.21% OB. 15.26% C. 10.00% OD. 20.50% suppose there is a 38% chance that a mango tree bears Fruit in a given year. For a randomly selected sample of 8 different years, find the mean, Variance and standard deviatin for the number of years that the mango free does not bear fruit? Choose the odd one and write answer:1. went, broke, visited, wrote2. swims, crys, plays, goes3. planned, baked, cooked, caught4. listen, invent, understand, plant5. break, discover, drink, eat6. eating, getting, goes, making7. was, broke, drink, fought8. forgot, give, knew, drew9. dreamt, ate, built, build10. paid, laid, send, sank