We would need to collect at least 268 service times to return a 95% confidence interval whose width is at most 20 seconds.
(a) We can use the formula for a confidence interval for the mean of a normal distribution with known standard deviation:
CI = X ± z*(σ/√n)
where X is the sample mean, σ is the population standard deviation (in this case, the sample standard deviation is used as an estimate of the population standard deviation since it is known), n is the sample size, and z is the critical value from the standard normal distribution for the desired level of confidence.
For a 95% confidence interval, the critical value is z = 1.96. Plugging in the values, we get:
CI = 8 ± 1.96*(7/√100) = 8 ± 1.372
Therefore, a 95% confidence interval for the mean service time is (6.63, 9.37) minutes.
(b) To find the sample size required to return a 95% confidence interval whose width is at most 20 seconds, we can use the formula for the margin of error:
ME = z*(σ/√n)
where ME is the maximum allowed margin of error (which is 1/3 minute or 0.33 minutes in this case).
Solving for n, we get:
n = (z*σ/ME)^2
For a 95% confidence interval, the critical value is z = 1.96. Plugging in the values, we get:
n = (1.96*7/0.33)^2 ≈ 267.17
Therefore, we would need to collect at least 268 service times to return a 95% confidence interval whose width is at most 20 seconds.
To learn more about confidence interval visit: https://brainly.com/question/24131141
#SPJ11
PLS HELP ASAP THANKS
Answer:
In general, the quadratic function f(x) = ax^2 + bx + c describes a parabola, which can open upwards or downwards depending on the sign of the coefficient a. In this case, since a = 5 is positive, the parabola opens upwards. The vertex of the parabola can be found using the formula (-b/2a, f(-b/2a)), which is the axis of symmetry of the parabola.
Step-by-step explanation:
either b or d i can't seem to remember how to find the width of the parent function im sorry but that narrows it down to two options
a sample of size 12 drawn from a normally distributed population has a sample mean 38.7 and a sample standard deviation 14.9. construct a 99.9onfidence interval for the population mean.
A 99.9% confidence interval for the population mean is (26.18, 51.22).
To construct the confidence interval, follow these steps:
1. Identify the sample mean (38.7) and sample standard deviation (14.9) from the given data.
2. Determine the sample size (n = 12) and the degrees of freedom (df = n-1 = 11).
3. Find the appropriate t-score for a 99.9% confidence level using a t-table or calculator (t = 4.695).
4. Calculate the standard error (SE) using the formula SE = sample standard deviation / √n, which is SE = 14.9 / √12 ≈ 4.3.
5. Multiply the t-score by the standard error: 4.695 × 4.3 ≈ 20.19.
6. Calculate the lower and upper bounds of the confidence interval: 38.7 - 20.19 = 26.18 and 38.7 + 20.19 = 51.22.
To know more about confidence interval click on below link:
https://brainly.com/question/29680703#
#SPJ11
assume the lifetimes of a certain light bulk are normally distributed with mean of 10 months and standard deviation of two months
In this scenario, we can expect most of the light bulbs to have lifetimes close to 10 months, with some variation due to the standard deviation of 2 months.
This question is about the lifetimes of a certain light bulb, we are given that they are normally distributed with a mean of 10 months and a standard deviation of 2 months.
This means that the lifetimes of the light bulbs follow a normal distribution, which is a bell-shaped curve, centered around the average lifetime (the mean) of 10 months. The standard deviation, which is 2 months in this case, gives us an idea of how much the lifetimes deviate from the mean. A smaller standard deviation indicates that the lifetimes are more closely packed around the mean, while a larger standard deviation indicates that the lifetimes are more spread out.
Learn more about standard deviation here, https://brainly.com/question/475676
#SPJ11
Describe the solutions for an equation with two variables of the form Ax+By=C
Answer:
An equation with two variables of the form Ax + By = C is a linear equation in two variables, x and y. The solutions to this equation are all the ordered pairs (x, y) that satisfy the equation when the values of x and y are plugged in.
Geometrically, the solutions to this equation form a straight line in the x-y plane. The slope of the line is -A/B, and the y-intercept is C/B. If A or B is zero, then the equation is not a linear equation, and the graph is either a horizontal or vertical line.
To find a solution to this equation, we can use a variety of methods, such as graphing, substitution, or elimination. Once we find one solution, we can usually find infinitely many solutions by adding or subtracting multiples of the coefficients A and B.
For example, the equation 2x + 3y = 12 has solutions such as (0, 4), (3, 2), and (6, 0), as well as infinitely many more solutions that lie on the line that passes through those points.
Hope this helps!
Answer:
So here's the deal: when you see an equation like Ax + By = C, you can totally rock it! Just rearrange it to isolate either y or x, and you've got a sweet equation in the form y = mx + b. The slope (m) tells you how steep the line is, and the y-intercept (b) is where it hits the y-axis. Plot some points, connect the dots, and boom! You've got a slick graph that represents the equation. It's like an epic adventure of solving real-world problems with style, whether it's time and distance, cost and quantity, or whatever else comes your way. You got this!
Step-by-step explanation:
Answer:
An equation with two variables of the form Ax + By = C is a linear equation in two variables, x and y. The solutions to this equation are all the ordered pairs (x, y) that satisfy the equation when the values of x and y are plugged in.
Geometrically, the solutions to this equation form a straight line in the x-y plane. The slope of the line is -A/B, and the y-intercept is C/B. If A or B is zero, then the equation is not a linear equation, and the graph is either a horizontal or vertical line.
To find a solution to this equation, we can use a variety of methods, such as graphing, substitution, or elimination. Once we find one solution, we can usually find infinitely many solutions by adding or subtracting multiples of the coefficients A and B.
For example, the equation 2x + 3y = 12 has solutions such as (0, 4), (3, 2), and (6, 0), as well as infinitely many more solutions that lie on the line that passes through those points.
Hope this helps!
Answer:
So here's the deal: when you see an equation like Ax + By = C, you can totally rock it! Just rearrange it to isolate either y or x, and you've got a sweet equation in the form y = mx + b. The slope (m) tells you how steep the line is, and the y-intercept (b) is where it hits the y-axis. Plot some points, connect the dots, and boom! You've got a slick graph that represents the equation. It's like an epic adventure of solving real-world problems with style, whether it's time and distance, cost and quantity, or whatever else comes your way. You got this!
Step-by-step explanation:
Yang's Material Company hauls gravel to a construction site, using a small truck and a large truck The carrying capacity and operating cost per load are given in the accompanying table. Yang must deliver a minimum of 240 cubic yards per day to satisfy his contract with the builder. The union contract with his drivers requires that he total number of loads per day is a minimum of 7. How many loads should be made in each truck per day to minimize the total cost? Small Truck Large TruckCapacity (yd^3) 40 60Cost per Load $77 $61 lnorder to minimize the total cosL hen mber of loads in a sm alltruck that should be made is___ and the number of loads in a large truck that should be made is ____
The required answer is total cost = 77x + 61y
Yang should make 4 loads in the small truck and 3 loads in the large truck per day.
To minimize the total cost, we need to find the optimal number of loads that should be made in each truck per day. Let's assume that x loads should be made in the small truck and y loads should be made in the large truck.
The carrying capacity of the small truck is 40 cubic yards, so the total capacity of x loads in the small truck would be 40x. Similarly, the total capacity of y loads in the large truck would be 60y.
According to the problem, Yang must deliver a minimum of 240 cubic yards per day. Therefore, we have the following constraint:
40x + 60y ≥ 240
The union contract requires that the total number of loads per day is a minimum of 7. So, we have another constraint:
x + y ≥ 7
Now, let's calculate the cost per load for each truck:
Cost per load in the small truck = $77
Cost per load in the large truck = $61
The total cost for x loads in the small truck would be 77x, and the total cost for y loads in the large truck would be 61y. Therefore, the total cost would be:
Total cost = 77x + 61y
We need to minimize this total cost subject to the two constraints mentioned above. This is a linear programming problem that can be solved using a graphical method or the simplex method.
After solving the problem, we get the optimal solution as:
x = 4 loads in the small truck
y = 3 loads in the large truck
Therefore, to minimize the total cost, Yang should make 4 loads in the small truck and 3 loads in the large truck per day.
To minimize the total cost for Yang's Material Company while meeting the contract requirements, follow these steps:
1. Define the variables: Let x be the number of loads for the small truck, and y be the number of loads for the large truck.
2. Set up the constraints based on the given information:
a. Capacity constraint: 40x + 60y >= 240 (to deliver at least 240 cubic yards per day)
b. Load constraint: x + y >= 7 (at least 7 total loads per day due to the union contract)
3. Set up the objective function to minimize the total cost: Total Cost = 77x + 61y
4. Solve the system of inequalities to find the feasible region, and determine the corner points.
5. Evaluate the objective function at each corner point to find the minimum cost.
After solving, the minimum total cost occurs when 2 loads are made with the small truck (x=2) and 5 loads are made with the large truck (y=5).
To know more about Yang's Material .Click on the link.
https://brainly.com/question/15655507
#SPJ11
What is the Mode, Mean. Median, and range of 5, 28, 16, 32, 5, 16, 48, 29, 5, 35
answer:
The mean of a set of numbers is the sum divided by the number of terms.
mean: 21.9
Arrange the data in an ascending order and the median is the middle value. If the number of values is an even number, the median will be the average of the two middle numbers.
median: 22
The mode is the element that occurs most in the data set. In this case, 5 occurs 3 times
mode: 5
Subtract the minimum data value from the maximum data value to find the data range. In this case, the data range is
48-5=43
Range: 43
The equation D=200(1.16)^m models the number of total downloads,D, for an app Carrie created m month after its launch.Of the following,which equation models the number of total downloads y years after launch?
[tex]D = 200(1.16)^{(12y)}[/tex] is the equation models the number of total downloads y years after launch.
What is equation?
In mathematics, an equation is a statement that two expressions are equal. It typically involves variables, which are values that can change, and constants, which are fixed values. Equations are used to represent relationships between variables and to solve for unknown values.
The given equation is [tex]D = 200(1.16)^m[/tex] where D represents the total number of downloads and m represents the number of months after the app was launched.
To find the equation that models the number of total downloads y years after launch, we need to convert the given equation in terms of years.
We know that there are 12 months in a year. So, if we divide the time in months by 12, we get the time in years. Therefore, we can use the formula m = 12y where m is in months and y is in years.
Now, substituting m = 12y in the given equation,
[tex]D = 200(1.16)^{(12y)}[/tex]
Therefore, the equation that models the number of total downloads y years after launch is [tex]D = 200(1.16)^{(12y)}[/tex]
Option (d) represents the correct equation.
Learn more about equation here,
https://brainly.com/question/16904744
#SPJ9
Find ALL the missing sides and angles measurements of the triangles below. Round your answers to the
nearest hundredths for sides and nearest degree for angles.
Answer:
The answer for
x≈4
y≈4
<B≈51°
The diagram at the right shows the orthocenter of an acute triangle. Drag vertex C to form a right triangle and an obtuse triangle. Which statements are true about the orthocenter? Check all that apply.
It lies inside an acute triangle.
It lies inside a right triangle.
It lies on a right triangle.
It lies on an obtuse triangle.
It lies outside an obtuse triangle.
Answer:
- It lies inside an acute triangle
- It lies on a right triangle.
- It lies outside an obtuse triangle.
I really need help with this, pls answer it as fast as possible!
Answer:
A) Tamara's work is correct.
Step-by-step explanation:
To determine whether a function is even, odd, or neither, we need to check whether f(-x) is equal to f(x) or -f(x).
In this case, Tamara correctly found the expression for f(-x) in step 1, and then in step 2, she checked whether f(-x) is equal to f(x) or -f(x).
Since f(-x) is equal to f(x), Tamara correctly concluded that f is an even function.
Find a formula an for the nth term of the arithmetic sequence whose first term is a1 = −5 such that an − 1 − an = 8 for n ≥ 1.
The formula an for the nth term of the arithmetic sequence whose first term is a1 = −5 such that an − 1 − an = 8 for n ≥ 1 is -2 - 3n.
To find a formula for the nth term of the arithmetic sequence with first term a1 = -5 and a common difference of d, we can use the formula:
an = a1 + (n-1)d
We know that an-1 - an = 8 for n ≥ 1, so we can substitute an-1 and an using the formula above:
(a1 + (n-2)d) - (a1 + (n-1)d) = 8
Simplifying and solving for d:
-5 - 2d + 5 + d = 8
d = -3
Now that we know the common difference, we can use the formula for the nth term:
an = -5 + (n-1)(-3)
an = -2 - 3n
Therefore, the formula for the nth term of the arithmetic sequence is an = -2 - 3n.
Know more about arithmetic sequence here:
https://brainly.com/question/6561461
#SPJ11
Please answer quickly I can’t do this :D
Hayley will travel from Telford Central to Shrewsbury in 0 hours and 21 minutes if she takes the quickest route.
How to calculate time?Based on the timetable provided, the fastest option for Hayley to get from Telford Central to Shrewsbury is by taking the 0915 train from Wellington to Shrewsbury, which arrives at 0920. Therefore, the total time it will take her is 21 minutes (from 0805 departure of Wellington to 0920 arrival in Shrewsbury).
To convert 21 minutes to hours and minutes, divide 21 by 60 to get the decimal value of 0.35 hours. Then convert the decimal value to minutes by multiplying it by 60, which gives:
0.35 hours × 60 = 21 minutes
So, it will take Hayley 0 hours and 21 minutes to get from Telford Central to Shrewsbury taking the fastest option.
Find out more on time here: https://brainly.com/question/2854969
#SPJ1
Define the statement f(x, y) is ω(g(x, y)).
This notation is often used in the analysis of algorithms to describe the worst-case time complexity of an algorithm in terms of the input size.
The statement f(x, y) is ω(g(x, y)) means that the function f(x, y) grows at a faster rate than the function g(x, y) as x and y approach infinity.
In other words, f(x, y) dominates g(x, y) in terms of growth.
f(x, y) represents the actual running time of the algorithm and g(x, y) represents the theoretical lower bound for the problem.
In other words, f(x, y) dominates g(x, y) in terms of growth, suggesting that the algorithm's worst-case time complexity is worse than the theoretical lower bound provided by g(x, y).
In the context of analyzing algorithms, the notation f(x, y) is ω(g(x, y)) is used to describe the relationship between the growth rates of two functions, f(x, y) and g(x, y), as x and y tend towards infinity.
To learn more about analysis of algorithms go to :
https://brainly.com/question/30586662#
#SPJ11
suppose that x=x(t) and y=y(t) are both functions of tif y^2 +xy-3x=1 and dy/dt = 4 when x=1 and y =-3 what is dx/dt?
dx/dt is equal to -10/3 when x=1 and y=-3. This can be answered by the concept of Differentiation.
To find dx/dt, we need to use implicit differentiation. Taking the derivative of both sides of y² + xy - 3x = 1 with respect to t, we get:
2y(dy/dt) + y(dx/dt) + x(dy/dt) - 3(dx/dt) = 0
Now we can substitute the values given in the problem: y = -3, dy/dt = 4, x = 1. Plugging these in, we get:
2(-3)(4) + (-3)(dx/dt) + 1(4) - 3(dx/dt) = 0
Simplifying, we get:
-24 - 3(dx/dt) + 4 - 3(dx/dt) = 0
-6(dx/dt) = 20
dx/dt = -20/6 = -10/3
Therefore, dx/dt is equal to -10/3 when x=1 and y=-3.
To learn more about Differentiation here:
brainly.com/question/24898810#
#SPJ11
A pie chart was constructed showing the number of points earned by four teams in a game. The yellow team earned 202 points and this was represented by a sector with an angle of 101 degrees. What was the total number of points earned by the four teams added together?
The total number of points earned by the four teams added together is: 720 points
How to interpret Pie charts?A Pie Chart is defined as a type of graph that shows us data in a circular graph. The pieces of the given graph are normally proportional to the specific fraction of the whole in each category. Thus, each slice of the pie is relative to the size of that category in the group as a whole. The entire “pie” usually denotes 100 percent of a whole. Meanwhile, the pie “slices” denotes the portions of the whole.
We are told that:
Number of points earned by yellow team = 202 points
Angle that represents this yellow team = 101 degrees
Since the total angle is 360 degrees, then if the total points is x, then it means that:
(101/360) * x = 202
x = (202 * 360)/101
x = 720 points
Read more about Pie charts at: https://brainly.com/question/26851221
#SPJ1
qt (.98, df = 77) outputs the value to use when constructing what confidence interval and for what sample size? group of answer choices 98i; n = 78 96i; n = 78 98i; n = 77 96i; n = 77
The correct answer is "98i; n = 77".
The function qt() in statistics is used to calculate the t-value for a given level of confidence and degrees of freedom.
In this case, qt(.98, df = 77) outputs the t-value for a 98% confidence interval with 77 degrees of freedom.
The t-value is used to calculate the margin of error for a confidence interval, which is used to estimate the population parameter based on the sample data.
For example, if you have a sample of size 78 and want to construct a 98% confidence interval for the population mean, you can use the t-value of qt(.98, df = 77) along with the sample mean and standard deviation to calculate the margin of error and construct the interval.
Therefore, the correct answer is "98i; n = 77".
To learn more about confidence visit:
https://brainly.com/question/29048041
#SPJ11
Which of the following math sentences matches the description, "negative 10 is less than negative 7"?
-7 < -10
-10 <-7
10 >7
7>10
HELP
Option B -10 <-7 is correct matches the description "negative 10 is less than negative 7".
what is negative number ?
A negative number is a real number that is less than zero. It is often written with a minus sign (-) in front of the number to indicate its negative value. For example, -5 is a negative number because it is less than zero, whereas 5 is a positive number because it is greater than zero. Negative numbers are used in many areas of mathematics, science
In the given question,
A negative number is a real number that is less than zero. It is often written with a minus sign (-) in front of the number to indicate its negative value.
the math sentences matches the description "negative 10 is less than negative 7". The correct math sentence is: -10 <-7.
To know more about negative number , visit:
https://brainly.com/question/30287693
#SPJ1
Using SPSS, calculate the appropriate test and report the results including descriptive statistics. Please upload in a a doc or pdf file. Here are the data: # of children in Richmond household: [2, 1, 0, 3, 2, 4, 3, 1, 0, 5, 4, 2, 0, 0, 1]
14. Write up the appropriate summary of your results from Question 10 using APA style:
The appropriate statistical test conducted using SPSS for the given data on the number of children in Richmond households is a one-sample t-test. The results revealed significant differences in the mean number of children in Richmond households compared to the expected mean.
Descriptive statistics: First, descriptive statistics were calculated using SPSS for the given data on the number of children in Richmond households. The data set included 15 observations, and the mean, standard deviation, and other relevant descriptive statistics were obtained. The mean number of children in Richmond households was found to be [INSERT MEAN], with a standard deviation of [INSERT STANDARD DEVIATION].
Hypothesis testing: Next, a one-sample t-test was conducted to compare the mean number of children in Richmond households to the expected mean. The expected mean was determined based on the research question or hypothesis being tested. The null hypothesis (H0) stated that there would be no significant difference between the mean number of children in Richmond households and the expected mean. The alternative hypothesis (Ha) stated that there would be a significant difference between the mean number of children in Richmond households and the expected mean.
Test statistic and p-value: The test statistic (t-value) was calculated by dividing the difference between the sample mean and the expected mean by the standard error of the mean. The standard error of the mean was obtained by dividing the standard deviation by the square root of the sample size. The p-value was then calculated based on the t-value, degrees of freedom (df) (which is equal to the sample size minus 1), and the distribution of the t-distribution.
Results: The results of the one-sample t-test revealed a significant difference between the mean number of children in Richmond households and the expected mean, t(df) = [INSERT T-VALUE], p = [INSERT P-VALUE]. The p-value was less than the significance level (e.g., α = 0.05), indicating that the null hypothesis was rejected.
Therefore, the results of the one-sample t-test using SPSS showed that the mean number of children in Richmond households was significantly different from the expected mean, [INSERT EXPECTED MEAN], with [INSERT DIRECTION OF DIFFERENCE]
To learn more about statistical test here:
brainly.com/question/30216367#
#SPJ11
Dee wants to buy 2 pens from the catalog. The retail price of the pens is $15.99 each. The pens are on sale. If you buy 2 or more pens, the price is reduced to $11.50 each. What will Dee write for the Total Price in the catalog?
Answer:
23 dollar in total
Step-by-step explanation:
since 11.50 for one if u buy 2 it would be 23dollar total
Which expression is the result of solving the equation ax - b = cy for 2? (For a + 0)
cy
cy
су +
46
The result of solving the equation ax - b = cy for 2 is x = (2 + b)/ (a + 0) or x = (2 + b)/a. This means that if we know the values of a, b, and c, we can find the value of x that satisfies the equation for a given value of cy (in this case, 2).
The given equation is:
ax - b = cy
To solve for 2, we substitute 2 for cy and simplify:
ax - b = 2
ax = 2 + b
x = (2 + b)/a
Since a + 0 = a, we can substitute a + 0 for a in the expression above:
x = (2 + b)/ (a + 0)
So, the result of solving the equation ax - b = cy for 2 is:
x = (2 + b)/ (a + 0) or x = (2 + b)/a
Learn more about equations.
brainly.com/question/27056029
#SPJ4
The graph represents a relation where x represents the independent variable and y represents the dependent variable.
a graph with points plotted at negative 5 comma 1, at negative 2 comma 0, at negative 2 comma negative 2, at 0 comma 2, at 1 comma 3, and at 5 comma 1
Is the relation a function? Explain.
Yes, because for each input there is exactly one output.
Yes, because for each output there is exactly one input.
No, because for each input there is not exactly one output.
No, because for each output there is not exactly one input.
Based on your description of the graph having a point at (-2,0) and also at (-2,-2), this is not a function.
For a graph to be the graph of a function, each x-value can only be paired with at most one y-value. In other words, you cannot have two points with the same x-value.
Answer:
No, because of each input there is not exactly one output.
Step-by-step explanation:
The input -2 has two outputs: 0 and -2
Helping in the name of Jesus.
. The graph of a quadratic function has a vertex at (-6, -24) and passes through the points (-9, -6) and (-3, -6). Write an equation for the function in standard form.
Answer:
y = -1/2(x + 6)^2 - 6
Step-by-step explanation:
0_0
Given the function f(x) = 2000(1.013), where a represents the amount of
money you put into your savings account on January 1st, and x represents the
number of days that have passed.
1. How much did you originally have in your savngs account?
2. By what percent does your total grow?
3. On your birthday (January 27th), how much money will you have?
Answer:
Step-by-step explanation:
1. The original amount in the savings account is represented by "a" in the function. Since there is no information provided on the value of "a," we cannot determine the original amount in the savings account.
2. The function shows that the savings account grows by a factor of 1.013 for each day that passes. To find the percent growth over a period of time, we can calculate the ratio of the final amount to the initial amount and express it as a percentage.
For example, if we want to calculate the percent growth over a year (365 days), we would use the following formula:
percent growth = (f(365) / f(0) - 1) x 100%
where f(0) represents the initial amount in the savings account and f(365) represents the amount after 365 days.
Using the function f(x) = 2000(1.013), we can calculate:
f(365) = 2000(1.013)^365 ≈ 2559.16
f(0) = 2000
percent growth = (2559.16 / 2000 - 1) x 100% ≈ 28%
Therefore, the savings account grows by approximately 28% per year.
3. To find the amount of money in the savings account on January 27th (the 27th day of the year), we can substitute x = 27 into the function:
f(27) = 2000(1.013)^27 ≈ 2043.54
Therefore, on January 27th, you would have approximately $2043.54 in your savings account.
trey griffith receives annual salary of 31000. today his supervisor informs him he would be getting 2300 raise. what percent his old salary is 2300 raise
The percent raise in their old salary of Trey is 7.42%.
What is the percentage?A percentage is a quantity or ratio expressed as a fraction of one hundred. If we need to compute the percentage of a number, divide it by the whole and multiply by 100. As a result, the percentage denotes a part per hundred. The term % refers to one hundred percent.
To calculate Trey's old salary as a percentage of his raise, divide the raise by his old income and multiply by 100:
(Raise / Old Salary) * 100 = Percentage
His previous pay was $31,000, and he received a $2,300 boost.
As a result, the percentage of his previous income that the rise represents is:
% = (2300 / 31000) * 100 = 7.42%
As a result, the rise represented 7.42% of his previous income.
Learn more about percentages here:
https://brainly.com/question/31060287
#SPJ1
find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (assume that n begins with 1.) − 1 64 , 2 81 , − 3 100 , 4 121 ,
The formula for the general term an of the sequence is :
an = (-1)^n * n / (n + 7)^2
To find a formula for the general term an of the sequence -1/64, 2/81, -3/100, 4/121, we need to analyze the pattern in both the numerators and the denominators. The given sequence is:
1. -1/64
2. 2/81
3. -3/100
4. 4/121
Observe the numerators: -1, 2, -3, 4. They follow an alternating sign pattern, starting with -1 and increasing in absolute value by 1 each term. This pattern can be represented as:
Numerator: (-1)^n * n
Now, examine the denominators: 64, 81, 100, 121. They are perfect squares and can be represented as:
64 = 8^2
81 = 9^2
100 = 10^2
121 = 11^2
Notice that the sequence of the bases (8, 9, 10, 11) increases by 1 each term. We can represent this as:
Denominator: (n + 7)^2
Combining the numerator and denominator patterns, we get the general term formula:
an = (-1)^n * n / (n + 7)^2
To learn more about sequences visit : https://brainly.com/question/7882626
#SPJ11
solve and show explanation plsss i’ll make you brainlistt
The amount that Julian will save, when Julian makes $500 is $95
What will be the amount saved, when Julian makes $500The scattered points on the graph represents the given parameter
When the line of the best fit is drawn on the scattered graph, it passes through the points
(175, 30) and (25, 0)
A linear equation is represented as
y = mx + c
Using the given points, we have
25m + c = 0
175m = c = 30
Subtract the equations
So, we have
150m = 30
Divide
m = 0.2
Solving for c, we have
c = -25m
c = -25 * 0.2
c = -5
So, the equation is
y = 0.2x - 5
When Julian makes $500, we have
x = 500
This gives
y = 0.2 * 500 - 5
Evaluate
y = 95
Hence, the savings at $500 is $95
Read more about linear regression at
https://brainly.com/question/17844286
#SPJ1
alan shoots a basketball at an angle of 40° from the horizontal. it leaves his hands 6 feet from the ground with a velocity of 30ft/s.Construct a set of parametric equations describing the shot
The final parametric equations for the shot are X = 20tcos(40°) and Y = 20tsin(40°) - 16t² + 6.
What is parametric?Parametric equations are equations that contain variables, or parameters, which can change. These equations are used to describe the behavior of objects in nature, such as the motion of a pendulum or the changing temperature of a system.
The initial X component of the shot is 20tcos(40°) because the initial velocity in the x-direction is 20 ft/s.
The initial Y component of the shot is 20tsin(40°) because the initial velocity in the y-direction is 20 ft/s at an angle of 40° from the horizontal.
The vertical component of the shot is affected by gravity, which accelerates the ball downward with a constant acceleration of 16 ft/s². Therefore, the equation of motion in the vertical direction is -16t².
Finally, the ball was initially 6 ft above ground level, so the equation of motion in the vertical direction must be shifted up by 6 ft.
Therefore, the final parametric equations for the shot are:
X = 20tcos(40°)
Y = 20tsin(40°) - 16t² + 6.
To learn more about parametric
https://brainly.com/question/30451972
#SPJ1
to find p(0 ≤ z ≤ 1.37) using appendix c-1, find the row containing 0.1 in the far left column. then find the column containing .037 in the top row. (round the values to 2 decimal places.)
The value of p(0 ≤ z ≤ 1.37) is approximately 0.41 (rounded to 2 decimal places).
What is Probability ?
Probability is a branch of mathematics that deals with the study of the likelihood or chance of an event occurring. It is the measure of the likelihood that a particular event or set of events will occur.
To find the value of p(0 ≤ z ≤ 1.37) using Appendix C-1, we need to locate the row containing 0.1 in the far-left column and the column containing 0.37 in the top row.
Starting with the row containing 0.1 in the far-left column, we can locate the value closest to 1.3 in the row, which is 1.37. Moving along the row to the right, we can find the corresponding value of the cumulative distribution function (CDF) for this value of z, which is 0.9147.
Next, we need to find the column containing 0.37 in the top row. The closest value in the column is 0.3707. Moving down the column to the row containing the CDF value we just found, we can read off the value of the CDF for z = 0, which is 0.5000.
To find the value of p(0 ≤ z ≤ 1.37), we subtract the CDF value for z = 0 from the CDF value for z = 1.37:
p(0 ≤ z ≤ 1.37) = 0.9147 - 0.5000 = 0.4147
Therefore, the value of p(0 ≤ z ≤ 1.37) is approximately 0.41 (rounded to 2 decimal places).
To learn more about Probability from given link.
https://brainly.com/question/29221515
#SPJ1
suppose p is invertible and a = pbp−1 . solve for b in terms of a
1. Multiply both sides by the inverse of p on the left: p^(-1)a = p^(-1)(pbp^(-1))
2. Simplify: p^(-1)a = bp^(-1)
3. Multiplying both sides by the inverse of p^(-1) on the right: (p^(-1)a)p = b
So, b = (p^(-1)a)p.
Given that p is invertible and a = pbp^(-1), we want to solve for b in terms of a.
First, let's multiply both sides of the equation by p:
ap = pb
Now, we can substitute pb with ap from the given equation:
a = apbp^(-1)
Multiplying both sides by p:
ap = apbp^(-1)p
ap = ab
Dividing both sides by a:
b = p^(-1)
Therefore, b is equal to the inverse of p.
In conclusion, b = p^(-1) in terms of a.
Learn more about Multiplying:
brainly.com/question/30875464
#SPJ11
PLEASE ANSWER QUICK AND FAST
Which of the following shows a correct method to calculate the surface area of the cylinder?
cylinder with diameter labeled 2.8 feet and height labeled 4.2 feet
SA = 2π(2.8)2 + 2.8π(4.2) square feet
SA = 2π(1.4)2 + 2.8π(4.2) square feet
SA = 2π(2.8)2 + 1.4π(4.2) square feet
SA = 2π(1.4)2 + 1.4π(4.2) square feet
Answer: SA = 2π(1.4)² + 2.8ππ(4.20 square feet
Step-by-step explanation:
The formula for calculating surface is 2πr² + 2πr× height